1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
use std::borrow::Cow;
use std::cell::RefCell;
use std::collections::HashMap;

use futures::sync::oneshot::{channel, Receiver, Sender};
use futures::{future, Future};
use tokio::runtime::current_thread::{Builder as RuntimeBuilder, Runtime};

use actor::Actor;
use address::{channel as addr_channel, Addr};
use arbiter::Arbiter;
use clock::Clock;
use context::Context;
use handler::{Handler, Message};
use msgs::{Execute, StopArbiter};
use registry::SystemRegistry;

/// System is an actor which manages runtime.
///
/// Before starting any actix's actors, `System` actor has to be created and
/// started with `System::run()` call. This method creates new `Arbiter` in
/// current thread and starts `System` actor.
///
/// # Examples
///
/// ```rust
/// extern crate actix;
///
/// use actix::prelude::*;
/// use std::time::Duration;
///
/// struct Timer {
///     dur: Duration,
/// }
///
/// impl Actor for Timer {
///     type Context = Context<Self>;
///
///     // stop system after `self.dur` seconds
///     fn started(&mut self, ctx: &mut Context<Self>) {
///         ctx.run_later(self.dur, |act, ctx| {
///             // Stop current running system.
///             System::current().stop();
///         });
///     }
/// }
///
/// fn main() {
///     // initialize system and run it.
///     // This function blocks current thread
///     let code = System::run(|| {
///         // Start `Timer` actor
///         Timer {
///             dur: Duration::new(0, 1),
///         }.start();
///     });
///
///     std::process::exit(code);
/// }
/// ```
#[derive(Clone, Debug)]
pub struct System {
    sys: Addr<SystemArbiter>,
    arbiter: Addr<Arbiter>,
    registry: SystemRegistry,
}

thread_local!(static CURRENT: RefCell<Option<System>> = RefCell::new(None););

impl System {
    /// Build a new system with a customized tokio runtime.
    ///
    /// This allows to customize the runtime. See struct level docs on
    /// `Builder` for more information.
    pub fn builder() -> Builder {
        Builder::new()
    }

    #[cfg_attr(feature = "cargo-clippy", allow(new_ret_no_self))]
    /// Create new system.
    ///
    /// This method panics if it can not create tokio runtime
    pub fn new<T: Into<String>>(name: T) -> SystemRunner {
        Self::builder().name(name).build()
    }

    /// Get current running system.
    pub fn current() -> System {
        CURRENT.with(|cell| match *cell.borrow() {
            Some(ref sys) => sys.clone(),
            None => panic!("System is not running"),
        })
    }

    /// Set current running system.
    #[doc(hidden)]
    pub(crate) fn is_set() -> bool {
        CURRENT.with(|cell| cell.borrow().is_some())
    }

    /// Set current running system.
    #[doc(hidden)]
    pub fn set_current(sys: System) {
        CURRENT.with(|s| {
            *s.borrow_mut() = Some(sys);
        })
    }

    /// Execute function with system reference.
    pub fn with_current<F, R>(f: F) -> R
    where
        F: FnOnce(&System) -> R,
    {
        CURRENT.with(|cell| match *cell.borrow() {
            Some(ref sys) => f(sys),
            None => panic!("System is not running"),
        })
    }

    /// Stop the system
    pub fn stop(&self) {
        self.stop_with_code(0)
    }

    /// Stop the system with a particular exit code.
    pub fn stop_with_code(&self, code: i32) {
        self.sys.do_send(SystemExit(code));
    }

    pub(crate) fn sys(&self) -> &Addr<SystemArbiter> {
        &self.sys
    }

    /// System arbiter
    pub fn arbiter(&self) -> &Addr<Arbiter> {
        &self.arbiter
    }

    /// Get current system registry.
    pub fn registry(&self) -> &SystemRegistry {
        &self.registry
    }

    /// This function will start tokio runtime and will finish once the
    /// `System::stop()` message get called.
    /// Function `f` get called within tokio runtime context.
    pub fn run<F>(f: F) -> i32
    where
        F: FnOnce() + 'static,
    {
        Self::builder().run(f)
    }
}

/// Helper object that runs System's event loop
#[must_use = "SystemRunner must be run"]
#[derive(Debug)]
pub struct SystemRunner {
    rt: Runtime,
    stop: Receiver<i32>,
}

impl SystemRunner {
    /// This function will start event loop and will finish once the
    /// `System::stop()` function is called.
    pub fn run(self) -> i32 {
        let SystemRunner { mut rt, stop, .. } = self;

        // run loop
        let _ = rt.block_on(future::lazy(move || {
            Arbiter::run_system();
            Ok::<_, ()>(())
        }));
        let code = match rt.block_on(stop) {
            Ok(code) => code,
            Err(_) => 1,
        };
        Arbiter::stop_system();
        code
    }

    /// Execute a future and wait for result.
    pub fn block_on<F, I, E>(&mut self, fut: F) -> Result<I, E>
    where
        F: Future<Item = I, Error = E>,
    {
        let _ = self.rt.block_on(future::lazy(move || {
            Arbiter::run_system();
            Ok::<_, ()>(())
        }));
        let res = self.rt.block_on(fut);
        let _ = self.rt.block_on(future::lazy(move || {
            Arbiter::stop_system();
            Ok::<_, ()>(())
        }));
        res
    }
}

#[derive(Debug)]
pub(crate) struct SystemArbiter {
    stop: Option<Sender<i32>>,
    arbiters: HashMap<String, Addr<Arbiter>>,
}

impl Actor for SystemArbiter {
    type Context = Context<Self>;
}

/// Stop system execution
struct SystemExit(pub i32);

impl Message for SystemExit {
    type Result = ();
}

impl Handler<SystemExit> for SystemArbiter {
    type Result = ();

    fn handle(&mut self, msg: SystemExit, _: &mut Context<Self>) {
        // stop arbiters
        for addr in self.arbiters.values() {
            addr.do_send(StopArbiter(msg.0));
        }
        // stop event loop
        if let Some(stop) = self.stop.take() {
            let _ = stop.send(msg.0);
        }
    }
}

/// Register Arbiter within system
pub(crate) struct RegisterArbiter(pub String, pub Addr<Arbiter>);

#[doc(hidden)]
impl Message for RegisterArbiter {
    type Result = ();
}

#[doc(hidden)]
impl Handler<RegisterArbiter> for SystemArbiter {
    type Result = ();

    fn handle(&mut self, msg: RegisterArbiter, _: &mut Context<Self>) {
        self.arbiters.insert(msg.0, msg.1);
    }
}

/// Unregister Arbiter
pub(crate) struct UnregisterArbiter(pub String);

#[doc(hidden)]
impl Message for UnregisterArbiter {
    type Result = ();
}

#[doc(hidden)]
impl Handler<UnregisterArbiter> for SystemArbiter {
    type Result = ();

    fn handle(&mut self, msg: UnregisterArbiter, _: &mut Context<Self>) {
        self.arbiters.remove(&msg.0);
    }
}

/// Execute function in arbiter's thread
impl<I: Send, E: Send> Handler<Execute<I, E>> for SystemArbiter {
    type Result = Result<I, E>;

    fn handle(&mut self, msg: Execute<I, E>, _: &mut Context<Self>) -> Result<I, E> {
        msg.exec()
    }
}

/// Builder struct for a System actor.
///
/// Either use `Builder::build` to create a system and start actors.
/// Alternatively, use `Builder::run` to start the tokio runtime and
/// run a function in its context.
///
/// # Examples
///
/// ```rust
/// extern crate actix;
///
/// use actix::prelude::*;
/// use actix::clock::Clock;
/// use std::time::Duration;
///
/// struct Timer {
///     dur: Duration,
/// }
///
/// impl Actor for Timer {
///     type Context = Context<Self>;
///
///     // stop system after `self.dur` seconds
///     fn started(&mut self, ctx: &mut Context<Self>) {
///         ctx.run_later(self.dur, |act, ctx| {
///             // Stop current running system.
///             System::current().stop();
///         });
///     }
/// }
///
/// fn main() {
///     // create a custom clock instance
///     let clock = Clock::new();
///
///     // initialize system and run it
///     // This function blocks current thread
///     let code = System::builder().clock(clock).run(|| {
///         // Start `Timer` actor. It will use the provided clock instance.
///         Timer {
///             dur: Duration::new(0, 1),
///         }.start();
///     });
///
///     std::process::exit(code);
/// }
/// ```
pub struct Builder {
    /// Name of the System. Defaults to "actix" if unset.
    name: Cow<'static, str>,

    /// Tokio runtime builder.
    runtime: RuntimeBuilder,
}

impl Builder {
    fn new() -> Self {
        Builder {
            name: Cow::Borrowed("actix"),
            runtime: RuntimeBuilder::new(),
        }
    }

    /// Sets the name of the System.
    pub fn name<T: Into<String>>(mut self, name: T) -> Self {
        self.name = Cow::Owned(name.into());
        self
    }

    /// Set the Clock instance that will be used by this System.
    ///
    /// Defaults to the system clock.
    pub fn clock(mut self, clock: Clock) -> Self {
        self.runtime.clock(clock);
        self
    }

    /// Create new System.
    ///
    /// This method panics if it can not create tokio runtime
    pub fn build(self) -> SystemRunner {
        self.create_runtime(|| {})
    }

    /// This function will start tokio runtime and will finish once the
    /// `System::stop()` message get called.
    /// Function `f` get called within tokio runtime context.
    pub fn run<F>(self, f: F) -> i32
    where
        F: FnOnce() + 'static,
    {
        self.create_runtime(f).run()
    }

    fn create_runtime<F>(mut self, f: F) -> SystemRunner
    where
        F: FnOnce() + 'static,
    {
        let (stop_tx, stop) = channel();
        let (addr_sender, addr_receiver) = addr_channel::channel(16);
        let (arb_sender, arb_receiver) = addr_channel::channel(16);

        let addr = Addr::new(arb_sender);
        let system = System {
            sys: Addr::new(addr_sender),
            arbiter: addr.clone(),
            registry: SystemRegistry::new(addr),
        };
        System::set_current(system.clone());

        // system arbiter
        let arb = SystemArbiter {
            arbiters: HashMap::new(),
            stop: Some(stop_tx),
        };

        let mut rt = self.runtime.build().unwrap();

        // init system arbiter and run configuration method
        let _ = rt.block_on(future::lazy(move || {
            Arbiter::new_system(arb_receiver, self.name.into_owned());
            let ctx = Context::with_receiver(addr_receiver);
            ctx.run(arb);

            f();
            Ok::<_, ()>(())
        }));

        SystemRunner { rt, stop }
    }
}