addr2line/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
//! `addr2line` provides a cross-platform library for retrieving per-address debug information
//! from files with DWARF debug information. Given an address, it can return the file name,
//! line number, and function name associated with that address, as well as the inline call
//! stack leading to that address.
//!
//! At the lowest level, the library uses a [`Context`] to cache parsed information so that
//! multiple lookups are efficient. To create a `Context`, you first need to open and parse the
//! file using an object file parser such as [`object`](https://github.com/gimli-rs/object),
//! create a [`gimli::Dwarf`], and finally call [`Context::from_dwarf`].
//!
//! Location information is obtained with [`Context::find_location`] or
//! [`Context::find_location_range`]. Function information is obtained with
//! [`Context::find_frames`], which returns a frame for each inline function. Each frame
//! contains both name and location.
//!
//! The library also provides a [`Loader`] which internally memory maps the files,
//! uses the `object` crate to do the parsing, and creates a `Context`.
//! The `Context` is not exposed, but the `Loader` provides the same functionality
//! via [`Loader::find_location`], [`Loader::find_location_range`], and
//! [`Loader::find_frames`]. The `Loader` also provides [`Loader::find_symbol`]
//! to use the symbol table instead of DWARF debugging information.
//! The `Loader` will load Mach-O dSYM files and split DWARF files as needed.
//!
//! The crate has a CLI wrapper around the library which provides some of
//! the functionality of the `addr2line` command line tool distributed with
//! [GNU binutils](https://sourceware.org/binutils/docs/binutils/addr2line.html).
#![deny(missing_docs)]
#![no_std]
#[cfg(feature = "cargo-all")]
compile_error!("'--all-features' is not supported; use '--features all' instead");
#[cfg(feature = "std")]
extern crate std;
#[allow(unused_imports)]
#[macro_use]
extern crate alloc;
#[cfg(feature = "fallible-iterator")]
pub extern crate fallible_iterator;
pub extern crate gimli;
use alloc::sync::Arc;
use core::ops::ControlFlow;
use crate::function::{Function, Functions, InlinedFunction, LazyFunctions};
use crate::line::{LazyLines, LineLocationRangeIter, Lines};
use crate::lookup::{LoopingLookup, SimpleLookup};
use crate::unit::{ResUnit, ResUnits, SupUnits};
#[cfg(feature = "smallvec")]
mod maybe_small {
pub type Vec<T> = smallvec::SmallVec<[T; 16]>;
pub type IntoIter<T> = smallvec::IntoIter<[T; 16]>;
}
#[cfg(not(feature = "smallvec"))]
mod maybe_small {
pub type Vec<T> = alloc::vec::Vec<T>;
pub type IntoIter<T> = alloc::vec::IntoIter<T>;
}
mod frame;
pub use frame::{demangle, demangle_auto, Frame, FrameIter, FunctionName, Location};
mod function;
mod lazy;
mod line;
#[cfg(feature = "loader")]
mod loader;
#[cfg(feature = "loader")]
pub use loader::{Loader, LoaderReader};
mod lookup;
pub use lookup::{LookupContinuation, LookupResult, SplitDwarfLoad};
mod unit;
pub use unit::LocationRangeIter;
type Error = gimli::Error;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum DebugFile {
Primary,
Supplementary,
Dwo,
}
/// The state necessary to perform address to line translation.
///
/// Constructing a `Context` is somewhat costly, so users should aim to reuse `Context`s
/// when performing lookups for many addresses in the same executable.
pub struct Context<R: gimli::Reader> {
sections: Arc<gimli::Dwarf<R>>,
units: ResUnits<R>,
sup_units: SupUnits<R>,
}
impl<R: gimli::Reader> Context<R> {
/// Construct a new `Context` from DWARF sections.
///
/// This method does not support using a supplementary object file.
#[allow(clippy::too_many_arguments)]
pub fn from_sections(
debug_abbrev: gimli::DebugAbbrev<R>,
debug_addr: gimli::DebugAddr<R>,
debug_aranges: gimli::DebugAranges<R>,
debug_info: gimli::DebugInfo<R>,
debug_line: gimli::DebugLine<R>,
debug_line_str: gimli::DebugLineStr<R>,
debug_ranges: gimli::DebugRanges<R>,
debug_rnglists: gimli::DebugRngLists<R>,
debug_str: gimli::DebugStr<R>,
debug_str_offsets: gimli::DebugStrOffsets<R>,
default_section: R,
) -> Result<Self, Error> {
Self::from_dwarf(gimli::Dwarf {
debug_abbrev,
debug_addr,
debug_aranges,
debug_info,
debug_line,
debug_line_str,
debug_str,
debug_str_offsets,
debug_types: default_section.clone().into(),
locations: gimli::LocationLists::new(
default_section.clone().into(),
default_section.into(),
),
ranges: gimli::RangeLists::new(debug_ranges, debug_rnglists),
file_type: gimli::DwarfFileType::Main,
sup: None,
abbreviations_cache: gimli::AbbreviationsCache::new(),
})
}
/// Construct a new `Context` from an existing [`gimli::Dwarf`] object.
#[inline]
pub fn from_dwarf(sections: gimli::Dwarf<R>) -> Result<Context<R>, Error> {
Self::from_arc_dwarf(Arc::new(sections))
}
/// Construct a new `Context` from an existing [`gimli::Dwarf`] object.
#[inline]
pub fn from_arc_dwarf(sections: Arc<gimli::Dwarf<R>>) -> Result<Context<R>, Error> {
let units = ResUnits::parse(§ions)?;
let sup_units = if let Some(sup) = sections.sup.as_ref() {
SupUnits::parse(sup)?
} else {
SupUnits::default()
};
Ok(Context {
sections,
units,
sup_units,
})
}
}
impl<R: gimli::Reader> Context<R> {
/// Find the DWARF unit corresponding to the given virtual memory address.
pub fn find_dwarf_and_unit(
&self,
probe: u64,
) -> LookupResult<impl LookupContinuation<Output = Option<gimli::UnitRef<R>>, Buf = R>> {
let mut units_iter = self.units.find(probe);
if let Some(unit) = units_iter.next() {
return LoopingLookup::new_lookup(
unit.find_function_or_location(probe, self),
move |r| {
ControlFlow::Break(match r {
Ok((Some(_), _)) | Ok((_, Some(_))) => {
let (_file, unit) = unit
.dwarf_and_unit(self)
// We've already been through both error cases here to get to this point.
.unwrap()
.unwrap();
Some(unit)
}
_ => match units_iter.next() {
Some(next_unit) => {
return ControlFlow::Continue(
next_unit.find_function_or_location(probe, self),
);
}
None => None,
},
})
},
);
}
LoopingLookup::new_complete(None)
}
/// Find the source file and line corresponding to the given virtual memory address.
pub fn find_location(&self, probe: u64) -> Result<Option<Location<'_>>, Error> {
for unit in self.units.find(probe) {
if let Some(location) = unit.find_location(probe, &self.sections)? {
return Ok(Some(location));
}
}
Ok(None)
}
/// Return source file and lines for a range of addresses. For each location it also
/// returns the address and size of the range of the underlying instructions.
pub fn find_location_range(
&self,
probe_low: u64,
probe_high: u64,
) -> Result<LocationRangeIter<'_, R>, Error> {
self.units
.find_location_range(probe_low, probe_high, &self.sections)
}
/// Return an iterator for the function frames corresponding to the given virtual
/// memory address.
///
/// If the probe address is not for an inline function then only one frame is
/// returned.
///
/// If the probe address is for an inline function then the first frame corresponds
/// to the innermost inline function. Subsequent frames contain the caller and call
/// location, until an non-inline caller is reached.
pub fn find_frames(
&self,
probe: u64,
) -> LookupResult<impl LookupContinuation<Output = Result<FrameIter<'_, R>, Error>, Buf = R>>
{
let mut units_iter = self.units.find(probe);
if let Some(unit) = units_iter.next() {
LoopingLookup::new_lookup(unit.find_function_or_location(probe, self), move |r| {
ControlFlow::Break(match r {
Err(e) => Err(e),
Ok((Some(function), location)) => {
let inlined_functions = function.find_inlined_functions(probe);
Ok(FrameIter::new_frames(
unit,
&self.sections,
function,
inlined_functions,
location,
))
}
Ok((None, Some(location))) => Ok(FrameIter::new_location(location)),
Ok((None, None)) => match units_iter.next() {
Some(next_unit) => {
return ControlFlow::Continue(
next_unit.find_function_or_location(probe, self),
);
}
None => Ok(FrameIter::new_empty()),
},
})
})
} else {
LoopingLookup::new_complete(Ok(FrameIter::new_empty()))
}
}
/// Preload units for `probe`.
///
/// The iterator returns pairs of `SplitDwarfLoad`s containing the
/// information needed to locate and load split DWARF for `probe` and
/// a matching callback to invoke once that data is available.
///
/// If this method is called, and all of the returned closures are invoked,
/// addr2line guarantees that any future API call for the address `probe`
/// will not require the loading of any split DWARF.
///
/// ```no_run
/// # use addr2line::*;
/// # use std::sync::Arc;
/// # let ctx: Context<gimli::EndianSlice<gimli::RunTimeEndian>> = todo!();
/// # let do_split_dwarf_load = |load: SplitDwarfLoad<gimli::EndianSlice<gimli::RunTimeEndian>>| -> Option<Arc<gimli::Dwarf<gimli::EndianSlice<gimli::RunTimeEndian>>>> { None };
/// const ADDRESS: u64 = 0xdeadbeef;
/// ctx.preload_units(ADDRESS).for_each(|(load, callback)| {
/// let dwo = do_split_dwarf_load(load);
/// callback(dwo);
/// });
///
/// let frames_iter = match ctx.find_frames(ADDRESS) {
/// LookupResult::Output(result) => result,
/// LookupResult::Load { .. } => unreachable!("addr2line promised we wouldn't get here"),
/// };
///
/// // ...
/// ```
pub fn preload_units(
&'_ self,
probe: u64,
) -> impl Iterator<
Item = (
SplitDwarfLoad<R>,
impl FnOnce(Option<Arc<gimli::Dwarf<R>>>) -> Result<(), gimli::Error> + '_,
),
> {
self.units
.find(probe)
.filter_map(move |unit| match unit.dwarf_and_unit(self) {
LookupResult::Output(_) => None,
LookupResult::Load { load, continuation } => Some((load, |result| {
continuation.resume(result).unwrap().map(|_| ())
})),
})
}
/// Initialize all line data structures. This is used for benchmarks.
#[doc(hidden)]
pub fn parse_lines(&self) -> Result<(), Error> {
for unit in self.units.iter() {
unit.parse_lines(&self.sections)?;
}
Ok(())
}
/// Initialize all function data structures. This is used for benchmarks.
#[doc(hidden)]
pub fn parse_functions(&self) -> Result<(), Error> {
for unit in self.units.iter() {
unit.parse_functions(self).skip_all_loads()?;
}
Ok(())
}
/// Initialize all inlined function data structures. This is used for benchmarks.
#[doc(hidden)]
pub fn parse_inlined_functions(&self) -> Result<(), Error> {
for unit in self.units.iter() {
unit.parse_inlined_functions(self).skip_all_loads()?;
}
Ok(())
}
}
impl<R: gimli::Reader> Context<R> {
// Find the unit containing the given offset, and convert the offset into a unit offset.
fn find_unit(
&self,
offset: gimli::DebugInfoOffset<R::Offset>,
file: DebugFile,
) -> Result<(&gimli::Unit<R>, gimli::UnitOffset<R::Offset>), Error> {
let unit = match file {
DebugFile::Primary => self.units.find_offset(offset)?,
DebugFile::Supplementary => self.sup_units.find_offset(offset)?,
DebugFile::Dwo => return Err(gimli::Error::NoEntryAtGivenOffset),
};
let unit_offset = offset
.to_unit_offset(&unit.header)
.ok_or(gimli::Error::NoEntryAtGivenOffset)?;
Ok((unit, unit_offset))
}
}
struct RangeAttributes<R: gimli::Reader> {
low_pc: Option<u64>,
high_pc: Option<u64>,
size: Option<u64>,
ranges_offset: Option<gimli::RangeListsOffset<<R as gimli::Reader>::Offset>>,
}
impl<R: gimli::Reader> Default for RangeAttributes<R> {
fn default() -> Self {
RangeAttributes {
low_pc: None,
high_pc: None,
size: None,
ranges_offset: None,
}
}
}
impl<R: gimli::Reader> RangeAttributes<R> {
fn for_each_range<F: FnMut(gimli::Range)>(
&self,
unit: gimli::UnitRef<R>,
mut f: F,
) -> Result<bool, Error> {
let mut added_any = false;
let mut add_range = |range: gimli::Range| {
if range.begin < range.end {
f(range);
added_any = true
}
};
if let Some(ranges_offset) = self.ranges_offset {
let mut range_list = unit.ranges(ranges_offset)?;
while let Some(range) = range_list.next()? {
add_range(range);
}
} else if let (Some(begin), Some(end)) = (self.low_pc, self.high_pc) {
add_range(gimli::Range { begin, end });
} else if let (Some(begin), Some(size)) = (self.low_pc, self.size) {
// If `begin` is a -1 tombstone, this will overflow and the check in
// `add_range` will ignore it.
let end = begin.wrapping_add(size);
add_range(gimli::Range { begin, end });
}
Ok(added_any)
}
}
#[cfg(test)]
mod tests {
#[test]
fn context_is_send() {
fn assert_is_send<T: Send>() {}
assert_is_send::<crate::Context<gimli::read::EndianSlice<'_, gimli::LittleEndian>>>();
}
}