1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
//! [AES-GCM-SIV][1] ([RFC 8452][2]): high-performance
//! [Authenticated Encryption with Associated Data (AEAD)][3] cipher which also
//! provides [nonce reuse misuse resistance][4].
//!
//! Suitable as a general purpose symmetric encryption cipher, AES-GCM-SIV also
//! removes many of the "sharp edges" of AES-GCM, providing significantly better
//! security bounds while simultaneously eliminating the most catastrophic risks
//! of nonce reuse that exist in AES-GCM.
//!
//! Decryption performance is equivalent to AES-GCM.
//! Encryption is marginally slower.
//!
//! See also:
//!
//! - [Adam Langley: AES-GCM-SIV][5]
//! - [Coda Hale: Towards A Safer Footgun][6]
//!
//! ## Performance Notes
//!
//! By default this crate will use software implementations of both AES and
//! the POLYVAL universal hash function.
//!
//! When targeting modern x86/x86_64 CPUs, use the following `RUSTFLAGS` to
//! take advantage of high performance AES-NI and CLMUL CPU intrinsics:
//!
//! ```text
//! RUSTFLAGS="-Ctarget-cpu=sandybridge -Ctarget-feature=+aes,+sse2,+sse4.1,+ssse3"
//! ```
//!
//! ## Security Warning
//!
//! No security audits of this crate have ever been performed.
//!
//! Some of this crate's dependencies were [audited by by NCC Group][7] as part of
//! an audit of the `aes-gcm` crate, including the AES implementations (both AES-NI
//! and a portable software implementation), as well as the `polyval` crate which
//! is used as an authenticator. There were no significant findings.
//!
//! All implementations contained in the crate are designed to execute in constant
//! time, either by relying on hardware intrinsics (i.e. AES-NI and CLMUL on
//! x86/x86_64), or using a portable implementation which is only constant time
//! on processors which implement constant-time multiplication.
//!
//! It is not suitable for use on processors with a variable-time multiplication
//! operation (e.g. short circuit on multiply-by-zero / multiply-by-one, such as
//! certain 32-bit PowerPC CPUs and some non-ARM microcontrollers).
//!
//! USE AT YOUR OWN RISK!
//!
//! # Usage
//!
//! Simple usage (allocating, no associated data):
//!
//! ```
//! use aes_gcm_siv::{Aes256GcmSiv, Key, Nonce}; // Or `Aes128GcmSiv`
//! use aes_gcm_siv::aead::{Aead, NewAead};
//!
//! let key = Key::from_slice(b"an example very very secret key.");
//! let cipher = Aes256GcmSiv::new(key);
//!
//! let nonce = Nonce::from_slice(b"unique nonce"); // 96-bits; unique per message
//!
//! let ciphertext = cipher.encrypt(nonce, b"plaintext message".as_ref())
//! .expect("encryption failure!"); // NOTE: handle this error to avoid panics!
//!
//!
//! let plaintext = cipher.decrypt(nonce, ciphertext.as_ref())
//! .expect("decryption failure!"); // NOTE: handle this error to avoid panics!
//!
//! assert_eq!(&plaintext, b"plaintext message");
//! ```
//!
//! ## In-place Usage (eliminates `alloc` requirement)
//!
//! This crate has an optional `alloc` feature which can be disabled in e.g.
//! microcontroller environments that don't have a heap.
//!
//! The [`AeadInPlace::encrypt_in_place`] and [`AeadInPlace::decrypt_in_place`]
//! methods accept any type that impls the [`aead::Buffer`] trait which
//! contains the plaintext for encryption or ciphertext for decryption.
//!
//! Note that if you enable the `heapless` feature of this crate,
//! you will receive an impl of [`aead::Buffer`] for `heapless::Vec`
//! (re-exported from the [`aead`] crate as [`aead::heapless::Vec`]),
//! which can then be passed as the `buffer` parameter to the in-place encrypt
//! and decrypt methods:
//!
//! ```
//! # #[cfg(feature = "heapless")]
//! # {
//! use aes_gcm_siv::{Aes256GcmSiv, Key, Nonce}; // Or `Aes128GcmSiv`
//! use aes_gcm_siv::aead::{AeadInPlace, NewAead};
//! use aes_gcm_siv::aead::heapless::Vec;
//!
//! let key = Key::from_slice(b"an example very very secret key.");
//! let cipher = Aes256GcmSiv::new(key);
//!
//! let nonce = Nonce::from_slice(b"unique nonce"); // 96-bits; unique per message
//!
//! let mut buffer: Vec<u8, 128> = Vec::new();
//! buffer.extend_from_slice(b"plaintext message");
//!
//! // Encrypt `buffer` in-place, replacing the plaintext contents with ciphertext
//! cipher.encrypt_in_place(nonce, b"", &mut buffer).expect("encryption failure!");
//!
//! // `buffer` now contains the message ciphertext
//! assert_ne!(&buffer, b"plaintext message");
//!
//! // Decrypt `buffer` in-place, replacing its ciphertext context with the original plaintext
//! cipher.decrypt_in_place(nonce, b"", &mut buffer).expect("decryption failure!");
//! assert_eq!(&buffer, b"plaintext message");
//! # }
//! ```
//!
//! [1]: https://en.wikipedia.org/wiki/AES-GCM-SIV
//! [2]: https://tools.ietf.org/html/rfc8452
//! [3]: https://en.wikipedia.org/wiki/Authenticated_encryption
//! [4]: https://github.com/miscreant/meta/wiki/Nonce-Reuse-Misuse-Resistance
//! [5]: https://www.imperialviolet.org/2017/05/14/aesgcmsiv.html
//! [6]: https://codahale.com/towards-a-safer-footgun/
//! [7]: https://research.nccgroup.com/2020/02/26/public-report-rustcrypto-aes-gcm-and-chacha20poly1305-implementation-review/
#![no_std]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg",
html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/meta/master/logo.svg"
)]
#![warn(missing_docs, rust_2018_idioms)]
pub use aead;
use aead::{AeadCore, AeadInPlace, Error, NewAead};
use cipher::{
consts::{U0, U12, U16},
generic_array::{typenum::Unsigned, ArrayLength, GenericArray},
Block, BlockCipher, BlockEncrypt, FromBlockCipher, NewBlockCipher, StreamCipher,
};
use ctr::Ctr32LE;
use polyval::{
universal_hash::{NewUniversalHash, UniversalHash},
Polyval,
};
use zeroize::Zeroize;
/// AES is optional to allow swapping in hardware-specific backends
#[cfg(feature = "aes")]
use aes::{Aes128, Aes256};
/// Maximum length of associated data (from RFC 8452 Section 6)
pub const A_MAX: u64 = 1 << 36;
/// Maximum length of plaintext (from RFC 8452 Section 6)
pub const P_MAX: u64 = 1 << 36;
/// Maximum length of ciphertext (from RFC 8452 Section 6)
pub const C_MAX: u64 = (1 << 36) + 16;
/// AES-GCM-SIV keys
pub type Key<KeySize> = GenericArray<u8, KeySize>;
/// AES-GCM-SIV nonces
pub type Nonce = GenericArray<u8, U12>;
/// AES-GCM-SIV tags
pub type Tag = GenericArray<u8, U16>;
/// AES-GCM-SIV with a 128-bit key
#[cfg(feature = "aes")]
pub type Aes128GcmSiv = AesGcmSiv<Aes128>;
/// AES-GCM-SIV with a 256-bit key
#[cfg(feature = "aes")]
pub type Aes256GcmSiv = AesGcmSiv<Aes256>;
/// AES-GCM-SIV: Misuse-Resistant Authenticated Encryption Cipher (RFC 8452)
#[derive(Clone)]
pub struct AesGcmSiv<Aes>
where
Aes: BlockCipher<BlockSize = U16> + BlockEncrypt,
Aes::ParBlocks: ArrayLength<Block<Aes>>,
{
/// Key generating key used to derive AES-GCM-SIV subkeys
key_generating_key: Aes,
}
impl<Aes> NewAead for AesGcmSiv<Aes>
where
Aes: NewBlockCipher + BlockCipher<BlockSize = U16> + BlockEncrypt,
Aes::ParBlocks: ArrayLength<Block<Aes>>,
{
type KeySize = Aes::KeySize;
fn new(key_bytes: &Key<Aes::KeySize>) -> Self {
Self {
key_generating_key: Aes::new(key_bytes),
}
}
}
impl<Aes> From<Aes> for AesGcmSiv<Aes>
where
Aes: BlockCipher<BlockSize = U16> + BlockEncrypt,
Aes::ParBlocks: ArrayLength<Block<Aes>>,
{
fn from(key_generating_key: Aes) -> Self {
Self { key_generating_key }
}
}
impl<Aes> AeadCore for AesGcmSiv<Aes>
where
Aes: NewBlockCipher + BlockCipher<BlockSize = U16> + BlockEncrypt,
Aes::ParBlocks: ArrayLength<Block<Aes>>,
{
type NonceSize = U12;
type TagSize = U16;
type CiphertextOverhead = U0;
}
impl<Aes> AeadInPlace for AesGcmSiv<Aes>
where
Aes: NewBlockCipher + BlockCipher<BlockSize = U16> + BlockEncrypt,
Aes::ParBlocks: ArrayLength<Block<Aes>>,
{
fn encrypt_in_place_detached(
&self,
nonce: &Nonce,
associated_data: &[u8],
buffer: &mut [u8],
) -> Result<Tag, Error> {
Cipher::<Aes>::new(&self.key_generating_key, nonce)
.encrypt_in_place_detached(associated_data, buffer)
}
fn decrypt_in_place_detached(
&self,
nonce: &Nonce,
associated_data: &[u8],
buffer: &mut [u8],
tag: &Tag,
) -> Result<(), Error> {
Cipher::<Aes>::new(&self.key_generating_key, nonce).decrypt_in_place_detached(
associated_data,
buffer,
tag,
)
}
}
/// AES-GCM-SIV: Misuse-Resistant Authenticated Encryption Cipher (RFC 8452)
struct Cipher<Aes>
where
Aes: BlockCipher<BlockSize = U16> + BlockEncrypt,
Aes::ParBlocks: ArrayLength<Block<Aes>>,
{
/// Encryption cipher
enc_cipher: Aes,
/// POLYVAL universal hash
polyval: Polyval,
/// Nonce
nonce: Nonce,
}
impl<Aes> Cipher<Aes>
where
Aes: NewBlockCipher + BlockCipher<BlockSize = U16> + BlockEncrypt,
Aes::ParBlocks: ArrayLength<Block<Aes>>,
{
/// Initialize AES-GCM-SIV, deriving per-nonce message-authentication and
/// message-encryption keys.
pub(crate) fn new(key_generating_key: &Aes, nonce: &Nonce) -> Self {
let mut mac_key = polyval::Key::default();
let mut enc_key = Key::default();
let mut block = cipher::Block::<Aes>::default();
let mut counter = 0u32;
// Derive subkeys from the master key-generating-key in counter mode.
//
// From RFC 8452 Section 4:
// <https://tools.ietf.org/html/rfc8452#section-4>
//
// > The message-authentication key is 128 bit, and the message-encryption
// > key is either 128 (for AES-128) or 256 bit (for AES-256).
// >
// > These keys are generated by encrypting a series of plaintext blocks
// > that contain a 32-bit, little-endian counter followed by the nonce,
// > and then discarding the second half of the resulting ciphertext. In
// > the AES-128 case, 128 + 128 = 256 bits of key material need to be
// > generated, and, since encrypting each block yields 64 bits after
// > discarding half, four blocks need to be encrypted. The counter
// > values for these blocks are 0, 1, 2, and 3. For AES-256, six blocks
// > are needed in total, with counter values 0 through 5 (inclusive).
for derived_key in &mut [mac_key.as_mut_slice(), enc_key.as_mut_slice()] {
for chunk in derived_key.chunks_mut(8) {
block[..4].copy_from_slice(&counter.to_le_bytes());
block[4..].copy_from_slice(nonce.as_slice());
key_generating_key.encrypt_block(&mut block);
chunk.copy_from_slice(&block.as_slice()[..8]);
counter += 1;
}
}
let result = Self {
enc_cipher: Aes::new(&enc_key),
polyval: Polyval::new(&mac_key),
nonce: *nonce,
};
// Zeroize all intermediate buffers
// TODO(tarcieri): use `Zeroizing` when const generics land
mac_key.as_mut_slice().zeroize();
enc_key.as_mut_slice().zeroize();
block.as_mut_slice().zeroize();
result
}
/// Encrypt the given message in-place, returning the authentication tag
pub(crate) fn encrypt_in_place_detached(
mut self,
associated_data: &[u8],
buffer: &mut [u8],
) -> Result<Tag, Error> {
if buffer.len() as u64 > P_MAX || associated_data.len() as u64 > A_MAX {
return Err(Error);
}
let tag = self.compute_tag(associated_data, buffer);
init_ctr(&self.enc_cipher, &tag).apply_keystream(buffer);
Ok(tag)
}
/// Decrypt the given message, first authenticating ciphertext integrity
/// and returning an error if it's been tampered with.
pub(crate) fn decrypt_in_place_detached(
mut self,
associated_data: &[u8],
buffer: &mut [u8],
tag: &Tag,
) -> Result<(), Error> {
if buffer.len() as u64 > C_MAX || associated_data.len() as u64 > A_MAX {
return Err(Error);
}
self.polyval.update_padded(associated_data);
let mut ctr = init_ctr(&self.enc_cipher, tag);
for chunk in buffer.chunks_mut(Aes::BlockSize::to_usize() * Aes::ParBlocks::to_usize()) {
ctr.apply_keystream(chunk);
self.polyval.update_padded(chunk);
}
let expected_tag = self.finish_tag(associated_data.len(), buffer.len());
use subtle::ConstantTimeEq;
if expected_tag.ct_eq(&tag).unwrap_u8() == 1 {
Ok(())
} else {
// On MAC verify failure, re-encrypt the plaintext buffer to
// prevent accidental exposure.
init_ctr(&self.enc_cipher, tag).apply_keystream(buffer);
Err(Error)
}
}
/// Authenticate the given plaintext and associated data using POLYVAL
fn compute_tag(&mut self, associated_data: &[u8], buffer: &mut [u8]) -> Tag {
self.polyval.update_padded(associated_data);
self.polyval.update_padded(buffer);
self.finish_tag(associated_data.len(), buffer.len())
}
/// Finish computing POLYVAL tag for AAD and buffer of the given length
fn finish_tag(&mut self, associated_data_len: usize, buffer_len: usize) -> Tag {
let associated_data_bits = (associated_data_len as u64) * 8;
let buffer_bits = (buffer_len as u64) * 8;
let mut block = polyval::Block::default();
block[..8].copy_from_slice(&associated_data_bits.to_le_bytes());
block[8..].copy_from_slice(&buffer_bits.to_le_bytes());
self.polyval.update(&block);
let mut tag = self.polyval.finalize_reset().into_bytes();
// XOR the nonce into the resulting tag
for (i, byte) in tag[..12].iter_mut().enumerate() {
*byte ^= self.nonce[i];
}
// Clear the highest bit
tag[15] &= 0x7f;
self.enc_cipher.encrypt_block(&mut tag);
tag
}
}
/// Initialize counter mode.
///
/// From RFC 8452 Section 4:
/// <https://tools.ietf.org/html/rfc8452#section-4>
///
/// > The initial counter block is the tag with the most significant bit
/// > of the last byte set to one.
fn init_ctr<Aes>(cipher: Aes, nonce: &cipher::Block<Aes>) -> Ctr32LE<Aes>
where
Aes: BlockCipher<BlockSize = U16> + BlockEncrypt,
Aes::ParBlocks: ArrayLength<Block<Aes>>,
{
let mut counter_block = *nonce;
counter_block[15] |= 0x80;
Ctr32LE::from_block_cipher(cipher, &counter_block)
}