1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
use core::{
fmt::Debug,
panic::{RefUnwindSafe, UnwindSafe},
};
use alloc::sync::Arc;
use crate::packed::{ext::Pointer, pattern::Patterns, teddy::generic::Match};
/// A builder for constructing a Teddy matcher.
///
/// The builder primarily permits fine grained configuration of the Teddy
/// matcher. Most options are made only available for testing/benchmarking
/// purposes. In reality, options are automatically determined by the nature
/// and number of patterns given to the builder.
#[derive(Clone, Debug)]
pub(crate) struct Builder {
/// When none, this is automatically determined. Otherwise, `false` means
/// slim Teddy is used (8 buckets) and `true` means fat Teddy is used
/// (16 buckets). Fat Teddy requires AVX2, so if that CPU feature isn't
/// available and Fat Teddy was requested, no matcher will be built.
only_fat: Option<bool>,
/// When none, this is automatically determined. Otherwise, `false` means
/// that 128-bit vectors will be used (up to SSSE3 instructions) where as
/// `true` means that 256-bit vectors will be used. As with `fat`, if
/// 256-bit vectors are requested and they aren't available, then a
/// searcher will not be built.
only_256bit: Option<bool>,
/// When true (the default), the number of patterns will be used as a
/// heuristic for refusing construction of a Teddy searcher. The point here
/// is that too many patterns can overwhelm Teddy. But this can be disabled
/// in cases where the caller knows better.
heuristic_pattern_limits: bool,
}
impl Default for Builder {
fn default() -> Builder {
Builder::new()
}
}
impl Builder {
/// Create a new builder for configuring a Teddy matcher.
pub(crate) fn new() -> Builder {
Builder {
only_fat: None,
only_256bit: None,
heuristic_pattern_limits: true,
}
}
/// Build a matcher for the set of patterns given. If a matcher could not
/// be built, then `None` is returned.
///
/// Generally, a matcher isn't built if the necessary CPU features aren't
/// available, an unsupported target or if the searcher is believed to be
/// slower than standard techniques (i.e., if there are too many literals).
pub(crate) fn build(&self, patterns: Arc<Patterns>) -> Option<Searcher> {
self.build_imp(patterns)
}
/// Require the use of Fat (true) or Slim (false) Teddy. Fat Teddy uses
/// 16 buckets where as Slim Teddy uses 8 buckets. More buckets are useful
/// for a larger set of literals.
///
/// `None` is the default, which results in an automatic selection based
/// on the number of literals and available CPU features.
pub(crate) fn only_fat(&mut self, yes: Option<bool>) -> &mut Builder {
self.only_fat = yes;
self
}
/// Request the use of 256-bit vectors (true) or 128-bit vectors (false).
/// Generally, a larger vector size is better since it either permits
/// matching more patterns or matching more bytes in the haystack at once.
///
/// `None` is the default, which results in an automatic selection based on
/// the number of literals and available CPU features.
pub(crate) fn only_256bit(&mut self, yes: Option<bool>) -> &mut Builder {
self.only_256bit = yes;
self
}
/// Request that heuristic limitations on the number of patterns be
/// employed. This useful to disable for benchmarking where one wants to
/// explore how Teddy performs on large number of patterns even if the
/// heuristics would otherwise refuse construction.
///
/// This is enabled by default.
pub(crate) fn heuristic_pattern_limits(
&mut self,
yes: bool,
) -> &mut Builder {
self.heuristic_pattern_limits = yes;
self
}
fn build_imp(&self, patterns: Arc<Patterns>) -> Option<Searcher> {
let patlimit = self.heuristic_pattern_limits;
// There's no particular reason why we limit ourselves to little endian
// here, but it seems likely that some parts of Teddy as they are
// currently written (e.g., the uses of `trailing_zeros`) are likely
// wrong on non-little-endian targets. Such things are likely easy to
// fix, but at the time of writing (2023/09/18), I actually do not know
// how to test this code on a big-endian target. So for now, we're
// conservative and just bail out.
if !cfg!(target_endian = "little") {
debug!("skipping Teddy because target isn't little endian");
return None;
}
// Too many patterns will overwhelm Teddy and likely lead to slow
// downs, typically in the verification step.
if patlimit && patterns.len() > 64 {
debug!("skipping Teddy because of too many patterns");
return None;
}
#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
{
use self::x86_64::{FatAVX2, SlimAVX2, SlimSSSE3};
let mask_len = core::cmp::min(4, patterns.minimum_len());
let beefy = patterns.len() > 32;
let has_avx2 = self::x86_64::is_available_avx2();
let has_ssse3 = has_avx2 || self::x86_64::is_available_ssse3();
let use_avx2 = if self.only_256bit == Some(true) {
if !has_avx2 {
debug!(
"skipping Teddy because avx2 was demanded but unavailable"
);
return None;
}
true
} else if self.only_256bit == Some(false) {
if !has_ssse3 {
debug!(
"skipping Teddy because ssse3 was demanded but unavailable"
);
return None;
}
false
} else if !has_ssse3 && !has_avx2 {
debug!(
"skipping Teddy because ssse3 and avx2 are unavailable"
);
return None;
} else {
has_avx2
};
let fat = match self.only_fat {
None => use_avx2 && beefy,
Some(false) => false,
Some(true) if !use_avx2 => {
debug!(
"skipping Teddy because fat was demanded, but fat \
Teddy requires avx2 which is unavailable"
);
return None;
}
Some(true) => true,
};
// Just like for aarch64, it's possible that too many patterns will
// overhwelm Teddy. Unlike aarch64 though, we have Fat teddy which
// helps things scale a bit more by spreading patterns over more
// buckets.
//
// These thresholds were determined by looking at the measurements
// for the rust/aho-corasick/packed/leftmost-first and
// rust/aho-corasick/dfa/leftmost-first engines on the `teddy/`
// benchmarks.
if patlimit && mask_len == 1 && patterns.len() > 16 {
debug!(
"skipping Teddy (mask len: 1) because there are \
too many patterns",
);
return None;
}
match (mask_len, use_avx2, fat) {
(1, false, _) => {
debug!("Teddy choice: 128-bit slim, 1 byte");
SlimSSSE3::<1>::new(&patterns)
}
(1, true, false) => {
debug!("Teddy choice: 256-bit slim, 1 byte");
SlimAVX2::<1>::new(&patterns)
}
(1, true, true) => {
debug!("Teddy choice: 256-bit fat, 1 byte");
FatAVX2::<1>::new(&patterns)
}
(2, false, _) => {
debug!("Teddy choice: 128-bit slim, 2 bytes");
SlimSSSE3::<2>::new(&patterns)
}
(2, true, false) => {
debug!("Teddy choice: 256-bit slim, 2 bytes");
SlimAVX2::<2>::new(&patterns)
}
(2, true, true) => {
debug!("Teddy choice: 256-bit fat, 2 bytes");
FatAVX2::<2>::new(&patterns)
}
(3, false, _) => {
debug!("Teddy choice: 128-bit slim, 3 bytes");
SlimSSSE3::<3>::new(&patterns)
}
(3, true, false) => {
debug!("Teddy choice: 256-bit slim, 3 bytes");
SlimAVX2::<3>::new(&patterns)
}
(3, true, true) => {
debug!("Teddy choice: 256-bit fat, 3 bytes");
FatAVX2::<3>::new(&patterns)
}
(4, false, _) => {
debug!("Teddy choice: 128-bit slim, 4 bytes");
SlimSSSE3::<4>::new(&patterns)
}
(4, true, false) => {
debug!("Teddy choice: 256-bit slim, 4 bytes");
SlimAVX2::<4>::new(&patterns)
}
(4, true, true) => {
debug!("Teddy choice: 256-bit fat, 4 bytes");
FatAVX2::<4>::new(&patterns)
}
_ => {
debug!("no supported Teddy configuration found");
None
}
}
}
#[cfg(all(
target_arch = "aarch64",
target_feature = "neon",
target_endian = "little"
))]
{
use self::aarch64::SlimNeon;
let mask_len = core::cmp::min(4, patterns.minimum_len());
if self.only_256bit == Some(true) {
debug!(
"skipping Teddy because 256-bits were demanded \
but unavailable"
);
return None;
}
if self.only_fat == Some(true) {
debug!(
"skipping Teddy because fat was demanded but unavailable"
);
}
// Since we don't have Fat teddy in aarch64 (I think we'd want at
// least 256-bit vectors for that), we need to be careful not to
// allow too many patterns as it might overwhelm Teddy. Generally
// speaking, as the mask length goes up, the more patterns we can
// handle because the mask length results in fewer candidates
// generated.
//
// These thresholds were determined by looking at the measurements
// for the rust/aho-corasick/packed/leftmost-first and
// rust/aho-corasick/dfa/leftmost-first engines on the `teddy/`
// benchmarks.
match mask_len {
1 => {
if patlimit && patterns.len() > 16 {
debug!(
"skipping Teddy (mask len: 1) because there are \
too many patterns",
);
}
debug!("Teddy choice: 128-bit slim, 1 byte");
SlimNeon::<1>::new(&patterns)
}
2 => {
if patlimit && patterns.len() > 32 {
debug!(
"skipping Teddy (mask len: 2) because there are \
too many patterns",
);
}
debug!("Teddy choice: 128-bit slim, 2 bytes");
SlimNeon::<2>::new(&patterns)
}
3 => {
if patlimit && patterns.len() > 48 {
debug!(
"skipping Teddy (mask len: 3) because there are \
too many patterns",
);
}
debug!("Teddy choice: 128-bit slim, 3 bytes");
SlimNeon::<3>::new(&patterns)
}
4 => {
debug!("Teddy choice: 128-bit slim, 4 bytes");
SlimNeon::<4>::new(&patterns)
}
_ => {
debug!("no supported Teddy configuration found");
None
}
}
}
#[cfg(not(any(
all(target_arch = "x86_64", target_feature = "sse2"),
all(
target_arch = "aarch64",
target_feature = "neon",
target_endian = "little"
)
)))]
{
None
}
}
}
/// A searcher that dispatches to one of several possible Teddy variants.
#[derive(Clone, Debug)]
pub(crate) struct Searcher {
/// The Teddy variant we use. We use dynamic dispatch under the theory that
/// it results in better codegen then a enum, although this is a specious
/// claim.
///
/// This `Searcher` is essentially a wrapper for a `SearcherT` trait
/// object. We just make `memory_usage` and `minimum_len` available without
/// going through dynamic dispatch.
imp: Arc<dyn SearcherT>,
/// Total heap memory used by the Teddy variant.
memory_usage: usize,
/// The minimum haystack length this searcher can handle. It is intended
/// for callers to use some other search routine (such as Rabin-Karp) in
/// cases where the haystack (or remainer of the haystack) is too short.
minimum_len: usize,
}
impl Searcher {
/// Look for the leftmost occurrence of any pattern in this search in the
/// given haystack starting at the given position.
///
/// # Panics
///
/// This panics when `haystack[at..].len()` is less than the minimum length
/// for this haystack.
#[inline(always)]
pub(crate) fn find(
&self,
haystack: &[u8],
at: usize,
) -> Option<crate::Match> {
// SAFETY: The Teddy implementations all require a minimum haystack
// length, and this is required for safety. Therefore, we assert it
// here in order to make this method sound.
assert!(haystack[at..].len() >= self.minimum_len);
let hayptr = haystack.as_ptr();
// SAFETY: Construction of the searcher guarantees that we are able
// to run it in the current environment (i.e., we won't get an AVX2
// searcher on a x86-64 CPU without AVX2 support). Also, the pointers
// are valid as they are derived directly from a borrowed slice.
let teddym = unsafe {
self.imp.find(hayptr.add(at), hayptr.add(haystack.len()))?
};
let start = teddym.start().as_usize().wrapping_sub(hayptr.as_usize());
let end = teddym.end().as_usize().wrapping_sub(hayptr.as_usize());
let span = crate::Span { start, end };
// OK because we won't permit the construction of a searcher that
// could report a pattern ID bigger than what can fit in the crate-wide
// PatternID type.
let pid = crate::PatternID::new_unchecked(teddym.pattern().as_usize());
let m = crate::Match::new(pid, span);
Some(m)
}
/// Returns the approximate total amount of heap used by this type, in
/// units of bytes.
#[inline(always)]
pub(crate) fn memory_usage(&self) -> usize {
self.memory_usage
}
/// Returns the minimum length, in bytes, that a haystack must be in order
/// to use it with this searcher.
#[inline(always)]
pub(crate) fn minimum_len(&self) -> usize {
self.minimum_len
}
}
/// A trait that provides dynamic dispatch over the different possible Teddy
/// variants on the same algorithm.
///
/// On `x86_64` for example, it isn't known until runtime which of 12 possible
/// variants will be used. One might use one of the four slim 128-bit vector
/// variants, or one of the four 256-bit vector variants or even one of the
/// four fat 256-bit vector variants.
///
/// Since this choice is generally made when the Teddy searcher is constructed
/// and this choice is based on the patterns given and what the current CPU
/// supports, it follows that there must be some kind of indirection at search
/// time that "selects" the variant chosen at build time.
///
/// There are a few different ways to go about this. One approach is to use an
/// enum. It works fine, but in my experiments, this generally results in worse
/// codegen. Another approach, which is what we use here, is dynamic dispatch
/// via a trait object. We basically implement this trait for each possible
/// variant, select the variant we want at build time and convert it to a
/// trait object for use at search time.
///
/// Another approach is to use function pointers and stick each of the possible
/// variants into a union. This is essentially isomorphic to the dynamic
/// dispatch approach, but doesn't require any allocations. Since this crate
/// requires `alloc`, there's no real reason (AFAIK) to go down this path. (The
/// `memchr` crate does this.)
trait SearcherT:
Debug + Send + Sync + UnwindSafe + RefUnwindSafe + 'static
{
/// Execute a search on the given haystack (identified by `start` and `end`
/// raw pointers).
///
/// # Safety
///
/// Essentially, the `start` and `end` pointers must be valid and point
/// to a haystack one can read. As long as you derive them from, for
/// example, a `&[u8]`, they should automatically satisfy all of the safety
/// obligations:
///
/// * Both `start` and `end` must be valid for reads.
/// * Both `start` and `end` must point to an initialized value.
/// * Both `start` and `end` must point to the same allocated object and
/// must either be in bounds or at most one byte past the end of the
/// allocated object.
/// * Both `start` and `end` must be _derived from_ a pointer to the same
/// object.
/// * The distance between `start` and `end` must not overflow `isize`.
/// * The distance being in bounds must not rely on "wrapping around" the
/// address space.
/// * It must be the case that `start <= end`.
/// * `end - start` must be greater than the minimum length for this
/// searcher.
///
/// Also, it is expected that implementations of this trait will tag this
/// method with a `target_feature` attribute. Callers must ensure that
/// they are executing this method in an environment where that attribute
/// is valid.
unsafe fn find(&self, start: *const u8, end: *const u8) -> Option<Match>;
}
#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
mod x86_64 {
use core::arch::x86_64::{__m128i, __m256i};
use alloc::sync::Arc;
use crate::packed::{
ext::Pointer,
pattern::Patterns,
teddy::generic::{self, Match},
};
use super::{Searcher, SearcherT};
#[derive(Clone, Debug)]
pub(super) struct SlimSSSE3<const BYTES: usize> {
slim128: generic::Slim<__m128i, BYTES>,
}
// Defines SlimSSSE3 wrapper functions for 1, 2, 3 and 4 bytes.
macro_rules! slim_ssse3 {
($len:expr) => {
impl SlimSSSE3<$len> {
/// Creates a new searcher using "slim" Teddy with 128-bit
/// vectors. If SSSE3 is not available in the current
/// environment, then this returns `None`.
pub(super) fn new(
patterns: &Arc<Patterns>,
) -> Option<Searcher> {
if !is_available_ssse3() {
return None;
}
Some(unsafe { SlimSSSE3::<$len>::new_unchecked(patterns) })
}
/// Creates a new searcher using "slim" Teddy with 256-bit
/// vectors without checking whether SSSE3 is available or not.
///
/// # Safety
///
/// Callers must ensure that SSSE3 is available in the current
/// environment.
#[target_feature(enable = "ssse3")]
unsafe fn new_unchecked(patterns: &Arc<Patterns>) -> Searcher {
let slim128 = generic::Slim::<__m128i, $len>::new(
Arc::clone(patterns),
);
let memory_usage = slim128.memory_usage();
let minimum_len = slim128.minimum_len();
let imp = Arc::new(SlimSSSE3 { slim128 });
Searcher { imp, memory_usage, minimum_len }
}
}
impl SearcherT for SlimSSSE3<$len> {
#[target_feature(enable = "ssse3")]
#[inline]
unsafe fn find(
&self,
start: *const u8,
end: *const u8,
) -> Option<Match> {
// SAFETY: All obligations except for `target_feature` are
// passed to the caller. Our use of `target_feature` is
// safe because construction of this type requires that the
// requisite target features are available.
self.slim128.find(start, end)
}
}
};
}
slim_ssse3!(1);
slim_ssse3!(2);
slim_ssse3!(3);
slim_ssse3!(4);
#[derive(Clone, Debug)]
pub(super) struct SlimAVX2<const BYTES: usize> {
slim128: generic::Slim<__m128i, BYTES>,
slim256: generic::Slim<__m256i, BYTES>,
}
// Defines SlimAVX2 wrapper functions for 1, 2, 3 and 4 bytes.
macro_rules! slim_avx2 {
($len:expr) => {
impl SlimAVX2<$len> {
/// Creates a new searcher using "slim" Teddy with 256-bit
/// vectors. If AVX2 is not available in the current
/// environment, then this returns `None`.
pub(super) fn new(
patterns: &Arc<Patterns>,
) -> Option<Searcher> {
if !is_available_avx2() {
return None;
}
Some(unsafe { SlimAVX2::<$len>::new_unchecked(patterns) })
}
/// Creates a new searcher using "slim" Teddy with 256-bit
/// vectors without checking whether AVX2 is available or not.
///
/// # Safety
///
/// Callers must ensure that AVX2 is available in the current
/// environment.
#[target_feature(enable = "avx2")]
unsafe fn new_unchecked(patterns: &Arc<Patterns>) -> Searcher {
let slim128 = generic::Slim::<__m128i, $len>::new(
Arc::clone(&patterns),
);
let slim256 = generic::Slim::<__m256i, $len>::new(
Arc::clone(&patterns),
);
let memory_usage =
slim128.memory_usage() + slim256.memory_usage();
let minimum_len = slim128.minimum_len();
let imp = Arc::new(SlimAVX2 { slim128, slim256 });
Searcher { imp, memory_usage, minimum_len }
}
}
impl SearcherT for SlimAVX2<$len> {
#[target_feature(enable = "avx2")]
#[inline]
unsafe fn find(
&self,
start: *const u8,
end: *const u8,
) -> Option<Match> {
// SAFETY: All obligations except for `target_feature` are
// passed to the caller. Our use of `target_feature` is
// safe because construction of this type requires that the
// requisite target features are available.
let len = end.distance(start);
if len < self.slim256.minimum_len() {
self.slim128.find(start, end)
} else {
self.slim256.find(start, end)
}
}
}
};
}
slim_avx2!(1);
slim_avx2!(2);
slim_avx2!(3);
slim_avx2!(4);
#[derive(Clone, Debug)]
pub(super) struct FatAVX2<const BYTES: usize> {
fat256: generic::Fat<__m256i, BYTES>,
}
// Defines SlimAVX2 wrapper functions for 1, 2, 3 and 4 bytes.
macro_rules! fat_avx2 {
($len:expr) => {
impl FatAVX2<$len> {
/// Creates a new searcher using "slim" Teddy with 256-bit
/// vectors. If AVX2 is not available in the current
/// environment, then this returns `None`.
pub(super) fn new(
patterns: &Arc<Patterns>,
) -> Option<Searcher> {
if !is_available_avx2() {
return None;
}
Some(unsafe { FatAVX2::<$len>::new_unchecked(patterns) })
}
/// Creates a new searcher using "slim" Teddy with 256-bit
/// vectors without checking whether AVX2 is available or not.
///
/// # Safety
///
/// Callers must ensure that AVX2 is available in the current
/// environment.
#[target_feature(enable = "avx2")]
unsafe fn new_unchecked(patterns: &Arc<Patterns>) -> Searcher {
let fat256 = generic::Fat::<__m256i, $len>::new(
Arc::clone(&patterns),
);
let memory_usage = fat256.memory_usage();
let minimum_len = fat256.minimum_len();
let imp = Arc::new(FatAVX2 { fat256 });
Searcher { imp, memory_usage, minimum_len }
}
}
impl SearcherT for FatAVX2<$len> {
#[target_feature(enable = "avx2")]
#[inline]
unsafe fn find(
&self,
start: *const u8,
end: *const u8,
) -> Option<Match> {
// SAFETY: All obligations except for `target_feature` are
// passed to the caller. Our use of `target_feature` is
// safe because construction of this type requires that the
// requisite target features are available.
self.fat256.find(start, end)
}
}
};
}
fat_avx2!(1);
fat_avx2!(2);
fat_avx2!(3);
fat_avx2!(4);
#[inline]
pub(super) fn is_available_ssse3() -> bool {
#[cfg(not(target_feature = "sse2"))]
{
false
}
#[cfg(target_feature = "sse2")]
{
#[cfg(target_feature = "ssse3")]
{
true
}
#[cfg(not(target_feature = "ssse3"))]
{
#[cfg(feature = "std")]
{
std::is_x86_feature_detected!("ssse3")
}
#[cfg(not(feature = "std"))]
{
false
}
}
}
}
#[inline]
pub(super) fn is_available_avx2() -> bool {
#[cfg(not(target_feature = "sse2"))]
{
false
}
#[cfg(target_feature = "sse2")]
{
#[cfg(target_feature = "avx2")]
{
true
}
#[cfg(not(target_feature = "avx2"))]
{
#[cfg(feature = "std")]
{
std::is_x86_feature_detected!("avx2")
}
#[cfg(not(feature = "std"))]
{
false
}
}
}
}
}
#[cfg(all(
target_arch = "aarch64",
target_feature = "neon",
target_endian = "little"
))]
mod aarch64 {
use core::arch::aarch64::uint8x16_t;
use alloc::sync::Arc;
use crate::packed::{
pattern::Patterns,
teddy::generic::{self, Match},
};
use super::{Searcher, SearcherT};
#[derive(Clone, Debug)]
pub(super) struct SlimNeon<const BYTES: usize> {
slim128: generic::Slim<uint8x16_t, BYTES>,
}
// Defines SlimSSSE3 wrapper functions for 1, 2, 3 and 4 bytes.
macro_rules! slim_neon {
($len:expr) => {
impl SlimNeon<$len> {
/// Creates a new searcher using "slim" Teddy with 128-bit
/// vectors. If SSSE3 is not available in the current
/// environment, then this returns `None`.
pub(super) fn new(
patterns: &Arc<Patterns>,
) -> Option<Searcher> {
Some(unsafe { SlimNeon::<$len>::new_unchecked(patterns) })
}
/// Creates a new searcher using "slim" Teddy with 256-bit
/// vectors without checking whether SSSE3 is available or not.
///
/// # Safety
///
/// Callers must ensure that SSSE3 is available in the current
/// environment.
#[target_feature(enable = "neon")]
unsafe fn new_unchecked(patterns: &Arc<Patterns>) -> Searcher {
let slim128 = generic::Slim::<uint8x16_t, $len>::new(
Arc::clone(patterns),
);
let memory_usage = slim128.memory_usage();
let minimum_len = slim128.minimum_len();
let imp = Arc::new(SlimNeon { slim128 });
Searcher { imp, memory_usage, minimum_len }
}
}
impl SearcherT for SlimNeon<$len> {
#[target_feature(enable = "neon")]
#[inline]
unsafe fn find(
&self,
start: *const u8,
end: *const u8,
) -> Option<Match> {
// SAFETY: All obligations except for `target_feature` are
// passed to the caller. Our use of `target_feature` is
// safe because construction of this type requires that the
// requisite target features are available.
self.slim128.find(start, end)
}
}
};
}
slim_neon!(1);
slim_neon!(2);
slim_neon!(3);
slim_neon!(4);
}