1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
use core::fmt::Debug;

use alloc::{
    boxed::Box, collections::BTreeMap, format, sync::Arc, vec, vec::Vec,
};

use crate::{
    packed::{
        ext::Pointer,
        pattern::Patterns,
        vector::{FatVector, Vector},
    },
    util::int::U32,
    PatternID,
};

/// A match type specialized to the Teddy implementations below.
///
/// Essentially, instead of representing a match at byte offsets, we use
/// raw pointers. This is because the implementations below operate on raw
/// pointers, and so this is a more natural return type based on how the
/// implementation works.
///
/// Also, the `PatternID` used here is a `u16`.
#[derive(Clone, Copy, Debug)]
pub(crate) struct Match {
    pid: PatternID,
    start: *const u8,
    end: *const u8,
}

impl Match {
    /// Returns the ID of the pattern that matched.
    pub(crate) fn pattern(&self) -> PatternID {
        self.pid
    }

    /// Returns a pointer into the haystack at which the match starts.
    pub(crate) fn start(&self) -> *const u8 {
        self.start
    }

    /// Returns a pointer into the haystack at which the match ends.
    pub(crate) fn end(&self) -> *const u8 {
        self.end
    }
}

/// A "slim" Teddy implementation that is generic over both the vector type
/// and the minimum length of the patterns being searched for.
///
/// Only 1, 2, 3 and 4 bytes are supported as minimum lengths.
#[derive(Clone, Debug)]
pub(crate) struct Slim<V, const BYTES: usize> {
    /// A generic data structure for doing "slim" Teddy verification.
    teddy: Teddy<8>,
    /// The masks used as inputs to the shuffle operation to generate
    /// candidates (which are fed into the verification routines).
    masks: [Mask<V>; BYTES],
}

impl<V: Vector, const BYTES: usize> Slim<V, BYTES> {
    /// Create a new "slim" Teddy searcher for the given patterns.
    ///
    /// # Panics
    ///
    /// This panics when `BYTES` is any value other than 1, 2, 3 or 4.
    ///
    /// # Safety
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    #[inline(always)]
    pub(crate) unsafe fn new(patterns: Arc<Patterns>) -> Slim<V, BYTES> {
        assert!(
            1 <= BYTES && BYTES <= 4,
            "only 1, 2, 3 or 4 bytes are supported"
        );
        let teddy = Teddy::new(patterns);
        let masks = SlimMaskBuilder::from_teddy(&teddy);
        Slim { teddy, masks }
    }

    /// Returns the approximate total amount of heap used by this type, in
    /// units of bytes.
    #[inline(always)]
    pub(crate) fn memory_usage(&self) -> usize {
        self.teddy.memory_usage()
    }

    /// Returns the minimum length, in bytes, that a haystack must be in order
    /// to use it with this searcher.
    #[inline(always)]
    pub(crate) fn minimum_len(&self) -> usize {
        V::BYTES + (BYTES - 1)
    }
}

impl<V: Vector> Slim<V, 1> {
    /// Look for an occurrences of the patterns in this finder in the haystack
    /// given by the `start` and `end` pointers.
    ///
    /// If no match could be found, then `None` is returned.
    ///
    /// # Safety
    ///
    /// The given pointers representing the haystack must be valid to read
    /// from. They must also point to a region of memory that is at least the
    /// minimum length required by this searcher.
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    #[inline(always)]
    pub(crate) unsafe fn find(
        &self,
        start: *const u8,
        end: *const u8,
    ) -> Option<Match> {
        let len = end.distance(start);
        debug_assert!(len >= self.minimum_len());
        let mut cur = start;
        while cur <= end.sub(V::BYTES) {
            if let Some(m) = self.find_one(cur, end) {
                return Some(m);
            }
            cur = cur.add(V::BYTES);
        }
        if cur < end {
            cur = end.sub(V::BYTES);
            if let Some(m) = self.find_one(cur, end) {
                return Some(m);
            }
        }
        None
    }

    /// Look for a match starting at the `V::BYTES` at and after `cur`. If
    /// there isn't one, then `None` is returned.
    ///
    /// # Safety
    ///
    /// The given pointers representing the haystack must be valid to read
    /// from. They must also point to a region of memory that is at least the
    /// minimum length required by this searcher.
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    #[inline(always)]
    unsafe fn find_one(
        &self,
        cur: *const u8,
        end: *const u8,
    ) -> Option<Match> {
        let c = self.candidate(cur);
        if !c.is_zero() {
            if let Some(m) = self.teddy.verify(cur, end, c) {
                return Some(m);
            }
        }
        None
    }

    /// Look for a candidate match (represented as a vector) starting at the
    /// `V::BYTES` at and after `cur`. If there isn't one, then a vector with
    /// all bits set to zero is returned.
    ///
    /// # Safety
    ///
    /// The given pointer representing the haystack must be valid to read
    /// from.
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    #[inline(always)]
    unsafe fn candidate(&self, cur: *const u8) -> V {
        let chunk = V::load_unaligned(cur);
        Mask::members1(chunk, self.masks)
    }
}

impl<V: Vector> Slim<V, 2> {
    /// See Slim<V, 1>::find.
    #[inline(always)]
    pub(crate) unsafe fn find(
        &self,
        start: *const u8,
        end: *const u8,
    ) -> Option<Match> {
        let len = end.distance(start);
        debug_assert!(len >= self.minimum_len());
        let mut cur = start.add(1);
        let mut prev0 = V::splat(0xFF);
        while cur <= end.sub(V::BYTES) {
            if let Some(m) = self.find_one(cur, end, &mut prev0) {
                return Some(m);
            }
            cur = cur.add(V::BYTES);
        }
        if cur < end {
            cur = end.sub(V::BYTES);
            prev0 = V::splat(0xFF);
            if let Some(m) = self.find_one(cur, end, &mut prev0) {
                return Some(m);
            }
        }
        None
    }

    /// See Slim<V, 1>::find_one.
    #[inline(always)]
    unsafe fn find_one(
        &self,
        cur: *const u8,
        end: *const u8,
        prev0: &mut V,
    ) -> Option<Match> {
        let c = self.candidate(cur, prev0);
        if !c.is_zero() {
            if let Some(m) = self.teddy.verify(cur.sub(1), end, c) {
                return Some(m);
            }
        }
        None
    }

    /// See Slim<V, 1>::candidate.
    #[inline(always)]
    unsafe fn candidate(&self, cur: *const u8, prev0: &mut V) -> V {
        let chunk = V::load_unaligned(cur);
        let (res0, res1) = Mask::members2(chunk, self.masks);
        let res0prev0 = res0.shift_in_one_byte(*prev0);
        let res = res0prev0.and(res1);
        *prev0 = res0;
        res
    }
}

impl<V: Vector> Slim<V, 3> {
    /// See Slim<V, 1>::find.
    #[inline(always)]
    pub(crate) unsafe fn find(
        &self,
        start: *const u8,
        end: *const u8,
    ) -> Option<Match> {
        let len = end.distance(start);
        debug_assert!(len >= self.minimum_len());
        let mut cur = start.add(2);
        let mut prev0 = V::splat(0xFF);
        let mut prev1 = V::splat(0xFF);
        while cur <= end.sub(V::BYTES) {
            if let Some(m) = self.find_one(cur, end, &mut prev0, &mut prev1) {
                return Some(m);
            }
            cur = cur.add(V::BYTES);
        }
        if cur < end {
            cur = end.sub(V::BYTES);
            prev0 = V::splat(0xFF);
            prev1 = V::splat(0xFF);
            if let Some(m) = self.find_one(cur, end, &mut prev0, &mut prev1) {
                return Some(m);
            }
        }
        None
    }

    /// See Slim<V, 1>::find_one.
    #[inline(always)]
    unsafe fn find_one(
        &self,
        cur: *const u8,
        end: *const u8,
        prev0: &mut V,
        prev1: &mut V,
    ) -> Option<Match> {
        let c = self.candidate(cur, prev0, prev1);
        if !c.is_zero() {
            if let Some(m) = self.teddy.verify(cur.sub(2), end, c) {
                return Some(m);
            }
        }
        None
    }

    /// See Slim<V, 1>::candidate.
    #[inline(always)]
    unsafe fn candidate(
        &self,
        cur: *const u8,
        prev0: &mut V,
        prev1: &mut V,
    ) -> V {
        let chunk = V::load_unaligned(cur);
        let (res0, res1, res2) = Mask::members3(chunk, self.masks);
        let res0prev0 = res0.shift_in_two_bytes(*prev0);
        let res1prev1 = res1.shift_in_one_byte(*prev1);
        let res = res0prev0.and(res1prev1).and(res2);
        *prev0 = res0;
        *prev1 = res1;
        res
    }
}

impl<V: Vector> Slim<V, 4> {
    /// See Slim<V, 1>::find.
    #[inline(always)]
    pub(crate) unsafe fn find(
        &self,
        start: *const u8,
        end: *const u8,
    ) -> Option<Match> {
        let len = end.distance(start);
        debug_assert!(len >= self.minimum_len());
        let mut cur = start.add(3);
        let mut prev0 = V::splat(0xFF);
        let mut prev1 = V::splat(0xFF);
        let mut prev2 = V::splat(0xFF);
        while cur <= end.sub(V::BYTES) {
            if let Some(m) =
                self.find_one(cur, end, &mut prev0, &mut prev1, &mut prev2)
            {
                return Some(m);
            }
            cur = cur.add(V::BYTES);
        }
        if cur < end {
            cur = end.sub(V::BYTES);
            prev0 = V::splat(0xFF);
            prev1 = V::splat(0xFF);
            prev2 = V::splat(0xFF);
            if let Some(m) =
                self.find_one(cur, end, &mut prev0, &mut prev1, &mut prev2)
            {
                return Some(m);
            }
        }
        None
    }

    /// See Slim<V, 1>::find_one.
    #[inline(always)]
    unsafe fn find_one(
        &self,
        cur: *const u8,
        end: *const u8,
        prev0: &mut V,
        prev1: &mut V,
        prev2: &mut V,
    ) -> Option<Match> {
        let c = self.candidate(cur, prev0, prev1, prev2);
        if !c.is_zero() {
            if let Some(m) = self.teddy.verify(cur.sub(3), end, c) {
                return Some(m);
            }
        }
        None
    }

    /// See Slim<V, 1>::candidate.
    #[inline(always)]
    unsafe fn candidate(
        &self,
        cur: *const u8,
        prev0: &mut V,
        prev1: &mut V,
        prev2: &mut V,
    ) -> V {
        let chunk = V::load_unaligned(cur);
        let (res0, res1, res2, res3) = Mask::members4(chunk, self.masks);
        let res0prev0 = res0.shift_in_three_bytes(*prev0);
        let res1prev1 = res1.shift_in_two_bytes(*prev1);
        let res2prev2 = res2.shift_in_one_byte(*prev2);
        let res = res0prev0.and(res1prev1).and(res2prev2).and(res3);
        *prev0 = res0;
        *prev1 = res1;
        *prev2 = res2;
        res
    }
}

/// A "fat" Teddy implementation that is generic over both the vector type
/// and the minimum length of the patterns being searched for.
///
/// Only 1, 2, 3 and 4 bytes are supported as minimum lengths.
#[derive(Clone, Debug)]
pub(crate) struct Fat<V, const BYTES: usize> {
    /// A generic data structure for doing "fat" Teddy verification.
    teddy: Teddy<16>,
    /// The masks used as inputs to the shuffle operation to generate
    /// candidates (which are fed into the verification routines).
    masks: [Mask<V>; BYTES],
}

impl<V: FatVector, const BYTES: usize> Fat<V, BYTES> {
    /// Create a new "fat" Teddy searcher for the given patterns.
    ///
    /// # Panics
    ///
    /// This panics when `BYTES` is any value other than 1, 2, 3 or 4.
    ///
    /// # Safety
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    #[inline(always)]
    pub(crate) unsafe fn new(patterns: Arc<Patterns>) -> Fat<V, BYTES> {
        assert!(
            1 <= BYTES && BYTES <= 4,
            "only 1, 2, 3 or 4 bytes are supported"
        );
        let teddy = Teddy::new(patterns);
        let masks = FatMaskBuilder::from_teddy(&teddy);
        Fat { teddy, masks }
    }

    /// Returns the approximate total amount of heap used by this type, in
    /// units of bytes.
    #[inline(always)]
    pub(crate) fn memory_usage(&self) -> usize {
        self.teddy.memory_usage()
    }

    /// Returns the minimum length, in bytes, that a haystack must be in order
    /// to use it with this searcher.
    #[inline(always)]
    pub(crate) fn minimum_len(&self) -> usize {
        V::Half::BYTES + (BYTES - 1)
    }
}

impl<V: FatVector> Fat<V, 1> {
    /// Look for an occurrences of the patterns in this finder in the haystack
    /// given by the `start` and `end` pointers.
    ///
    /// If no match could be found, then `None` is returned.
    ///
    /// # Safety
    ///
    /// The given pointers representing the haystack must be valid to read
    /// from. They must also point to a region of memory that is at least the
    /// minimum length required by this searcher.
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    #[inline(always)]
    pub(crate) unsafe fn find(
        &self,
        start: *const u8,
        end: *const u8,
    ) -> Option<Match> {
        let len = end.distance(start);
        debug_assert!(len >= self.minimum_len());
        let mut cur = start;
        while cur <= end.sub(V::Half::BYTES) {
            if let Some(m) = self.find_one(cur, end) {
                return Some(m);
            }
            cur = cur.add(V::Half::BYTES);
        }
        if cur < end {
            cur = end.sub(V::Half::BYTES);
            if let Some(m) = self.find_one(cur, end) {
                return Some(m);
            }
        }
        None
    }

    /// Look for a match starting at the `V::BYTES` at and after `cur`. If
    /// there isn't one, then `None` is returned.
    ///
    /// # Safety
    ///
    /// The given pointers representing the haystack must be valid to read
    /// from. They must also point to a region of memory that is at least the
    /// minimum length required by this searcher.
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    #[inline(always)]
    unsafe fn find_one(
        &self,
        cur: *const u8,
        end: *const u8,
    ) -> Option<Match> {
        let c = self.candidate(cur);
        if !c.is_zero() {
            if let Some(m) = self.teddy.verify(cur, end, c) {
                return Some(m);
            }
        }
        None
    }

    /// Look for a candidate match (represented as a vector) starting at the
    /// `V::BYTES` at and after `cur`. If there isn't one, then a vector with
    /// all bits set to zero is returned.
    ///
    /// # Safety
    ///
    /// The given pointer representing the haystack must be valid to read
    /// from.
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    #[inline(always)]
    unsafe fn candidate(&self, cur: *const u8) -> V {
        let chunk = V::load_half_unaligned(cur);
        Mask::members1(chunk, self.masks)
    }
}

impl<V: FatVector> Fat<V, 2> {
    /// See `Fat<V, 1>::find`.
    #[inline(always)]
    pub(crate) unsafe fn find(
        &self,
        start: *const u8,
        end: *const u8,
    ) -> Option<Match> {
        let len = end.distance(start);
        debug_assert!(len >= self.minimum_len());
        let mut cur = start.add(1);
        let mut prev0 = V::splat(0xFF);
        while cur <= end.sub(V::Half::BYTES) {
            if let Some(m) = self.find_one(cur, end, &mut prev0) {
                return Some(m);
            }
            cur = cur.add(V::Half::BYTES);
        }
        if cur < end {
            cur = end.sub(V::Half::BYTES);
            prev0 = V::splat(0xFF);
            if let Some(m) = self.find_one(cur, end, &mut prev0) {
                return Some(m);
            }
        }
        None
    }

    /// See `Fat<V, 1>::find_one`.
    #[inline(always)]
    unsafe fn find_one(
        &self,
        cur: *const u8,
        end: *const u8,
        prev0: &mut V,
    ) -> Option<Match> {
        let c = self.candidate(cur, prev0);
        if !c.is_zero() {
            if let Some(m) = self.teddy.verify(cur.sub(1), end, c) {
                return Some(m);
            }
        }
        None
    }

    /// See `Fat<V, 1>::candidate`.
    #[inline(always)]
    unsafe fn candidate(&self, cur: *const u8, prev0: &mut V) -> V {
        let chunk = V::load_half_unaligned(cur);
        let (res0, res1) = Mask::members2(chunk, self.masks);
        let res0prev0 = res0.half_shift_in_one_byte(*prev0);
        let res = res0prev0.and(res1);
        *prev0 = res0;
        res
    }
}

impl<V: FatVector> Fat<V, 3> {
    /// See `Fat<V, 1>::find`.
    #[inline(always)]
    pub(crate) unsafe fn find(
        &self,
        start: *const u8,
        end: *const u8,
    ) -> Option<Match> {
        let len = end.distance(start);
        debug_assert!(len >= self.minimum_len());
        let mut cur = start.add(2);
        let mut prev0 = V::splat(0xFF);
        let mut prev1 = V::splat(0xFF);
        while cur <= end.sub(V::Half::BYTES) {
            if let Some(m) = self.find_one(cur, end, &mut prev0, &mut prev1) {
                return Some(m);
            }
            cur = cur.add(V::Half::BYTES);
        }
        if cur < end {
            cur = end.sub(V::Half::BYTES);
            prev0 = V::splat(0xFF);
            prev1 = V::splat(0xFF);
            if let Some(m) = self.find_one(cur, end, &mut prev0, &mut prev1) {
                return Some(m);
            }
        }
        None
    }

    /// See `Fat<V, 1>::find_one`.
    #[inline(always)]
    unsafe fn find_one(
        &self,
        cur: *const u8,
        end: *const u8,
        prev0: &mut V,
        prev1: &mut V,
    ) -> Option<Match> {
        let c = self.candidate(cur, prev0, prev1);
        if !c.is_zero() {
            if let Some(m) = self.teddy.verify(cur.sub(2), end, c) {
                return Some(m);
            }
        }
        None
    }

    /// See `Fat<V, 1>::candidate`.
    #[inline(always)]
    unsafe fn candidate(
        &self,
        cur: *const u8,
        prev0: &mut V,
        prev1: &mut V,
    ) -> V {
        let chunk = V::load_half_unaligned(cur);
        let (res0, res1, res2) = Mask::members3(chunk, self.masks);
        let res0prev0 = res0.half_shift_in_two_bytes(*prev0);
        let res1prev1 = res1.half_shift_in_one_byte(*prev1);
        let res = res0prev0.and(res1prev1).and(res2);
        *prev0 = res0;
        *prev1 = res1;
        res
    }
}

impl<V: FatVector> Fat<V, 4> {
    /// See `Fat<V, 1>::find`.
    #[inline(always)]
    pub(crate) unsafe fn find(
        &self,
        start: *const u8,
        end: *const u8,
    ) -> Option<Match> {
        let len = end.distance(start);
        debug_assert!(len >= self.minimum_len());
        let mut cur = start.add(3);
        let mut prev0 = V::splat(0xFF);
        let mut prev1 = V::splat(0xFF);
        let mut prev2 = V::splat(0xFF);
        while cur <= end.sub(V::Half::BYTES) {
            if let Some(m) =
                self.find_one(cur, end, &mut prev0, &mut prev1, &mut prev2)
            {
                return Some(m);
            }
            cur = cur.add(V::Half::BYTES);
        }
        if cur < end {
            cur = end.sub(V::Half::BYTES);
            prev0 = V::splat(0xFF);
            prev1 = V::splat(0xFF);
            prev2 = V::splat(0xFF);
            if let Some(m) =
                self.find_one(cur, end, &mut prev0, &mut prev1, &mut prev2)
            {
                return Some(m);
            }
        }
        None
    }

    /// See `Fat<V, 1>::find_one`.
    #[inline(always)]
    unsafe fn find_one(
        &self,
        cur: *const u8,
        end: *const u8,
        prev0: &mut V,
        prev1: &mut V,
        prev2: &mut V,
    ) -> Option<Match> {
        let c = self.candidate(cur, prev0, prev1, prev2);
        if !c.is_zero() {
            if let Some(m) = self.teddy.verify(cur.sub(3), end, c) {
                return Some(m);
            }
        }
        None
    }

    /// See `Fat<V, 1>::candidate`.
    #[inline(always)]
    unsafe fn candidate(
        &self,
        cur: *const u8,
        prev0: &mut V,
        prev1: &mut V,
        prev2: &mut V,
    ) -> V {
        let chunk = V::load_half_unaligned(cur);
        let (res0, res1, res2, res3) = Mask::members4(chunk, self.masks);
        let res0prev0 = res0.half_shift_in_three_bytes(*prev0);
        let res1prev1 = res1.half_shift_in_two_bytes(*prev1);
        let res2prev2 = res2.half_shift_in_one_byte(*prev2);
        let res = res0prev0.and(res1prev1).and(res2prev2).and(res3);
        *prev0 = res0;
        *prev1 = res1;
        *prev2 = res2;
        res
    }
}

/// The common elements of all "slim" and "fat" Teddy search implementations.
///
/// Essentially, this contains the patterns and the buckets. Namely, it
/// contains enough to implement the verification step after candidates are
/// identified via the shuffle masks.
///
/// It is generic over the number of buckets used. In general, the number of
/// buckets is either 8 (for "slim" Teddy) or 16 (for "fat" Teddy). The generic
/// parameter isn't really meant to be instantiated for any value other than
/// 8 or 16, although it is technically possible. The main hiccup is that there
/// is some bit-shifting done in the critical part of verification that could
/// be quite expensive if `N` is not a multiple of 2.
#[derive(Clone, Debug)]
struct Teddy<const BUCKETS: usize> {
    /// The patterns we are searching for.
    ///
    /// A pattern string can be found by its `PatternID`.
    patterns: Arc<Patterns>,
    /// The allocation of patterns in buckets. This only contains the IDs of
    /// patterns. In order to do full verification, callers must provide the
    /// actual patterns when using Teddy.
    buckets: [Vec<PatternID>; BUCKETS],
    // N.B. The above representation is very simple, but it definitely results
    // in ping-ponging between different allocations during verification. I've
    // tried experimenting with other representations that flatten the pattern
    // strings into a single allocation, but it doesn't seem to help much.
    // Probably everything is small enough to fit into cache anyway, and so the
    // pointer chasing isn't a big deal?
    //
    // One other avenue I haven't explored is some kind of hashing trick
    // that let's us do another high-confidence check before launching into
    // `memcmp`.
}

impl<const BUCKETS: usize> Teddy<BUCKETS> {
    /// Create a new generic data structure for Teddy verification.
    fn new(patterns: Arc<Patterns>) -> Teddy<BUCKETS> {
        assert_ne!(0, patterns.len(), "Teddy requires at least one pattern");
        assert_ne!(
            0,
            patterns.minimum_len(),
            "Teddy does not support zero-length patterns"
        );
        assert!(
            BUCKETS == 8 || BUCKETS == 16,
            "Teddy only supports 8 or 16 buckets"
        );
        // MSRV(1.63): Use core::array::from_fn below instead of allocating a
        // superfluous outer Vec. Not a big deal (especially given the BTreeMap
        // allocation below), but nice to not do it.
        let buckets =
            <[Vec<PatternID>; BUCKETS]>::try_from(vec![vec![]; BUCKETS])
                .unwrap();
        let mut t = Teddy { patterns, buckets };

        let mut map: BTreeMap<Box<[u8]>, usize> = BTreeMap::new();
        for (id, pattern) in t.patterns.iter() {
            // We try to be slightly clever in how we assign patterns into
            // buckets. Generally speaking, we want patterns with the same
            // prefix to be in the same bucket, since it minimizes the amount
            // of time we spend churning through buckets in the verification
            // step.
            //
            // So we could assign patterns with the same N-prefix (where N is
            // the size of the mask, which is one of {1, 2, 3}) to the same
            // bucket. However, case insensitive searches are fairly common, so
            // we'd for example, ideally want to treat `abc` and `ABC` as if
            // they shared the same prefix. ASCII has the nice property that
            // the lower 4 bits of A and a are the same, so we therefore group
            // patterns with the same low-nybble-N-prefix into the same bucket.
            //
            // MOREOVER, this is actually necessary for correctness! In
            // particular, by grouping patterns with the same prefix into the
            // same bucket, we ensure that we preserve correct leftmost-first
            // and leftmost-longest match semantics. In addition to the fact
            // that `patterns.iter()` iterates in the correct order, this
            // guarantees that all possible ambiguous matches will occur in
            // the same bucket. The verification routine could be adjusted to
            // support correct leftmost match semantics regardless of bucket
            // allocation, but that results in a performance hit. It's much
            // nicer to be able to just stop as soon as a match is found.
            let lonybs = pattern.low_nybbles(t.mask_len());
            if let Some(&bucket) = map.get(&lonybs) {
                t.buckets[bucket].push(id);
            } else {
                // N.B. We assign buckets in reverse because it shouldn't have
                // any influence on performance, but it does make it harder to
                // get leftmost match semantics accidentally correct.
                let bucket = (BUCKETS - 1) - (id.as_usize() % BUCKETS);
                t.buckets[bucket].push(id);
                map.insert(lonybs, bucket);
            }
        }
        t
    }

    /// Verify whether there are any matches starting at or after `cur` in the
    /// haystack. The candidate chunk given should correspond to 8-bit bitsets
    /// for N buckets.
    ///
    /// # Safety
    ///
    /// The given pointers representing the haystack must be valid to read
    /// from.
    #[inline(always)]
    unsafe fn verify64(
        &self,
        cur: *const u8,
        end: *const u8,
        mut candidate_chunk: u64,
    ) -> Option<Match> {
        while candidate_chunk != 0 {
            let bit = candidate_chunk.trailing_zeros().as_usize();
            candidate_chunk &= !(1 << bit);

            let cur = cur.add(bit / BUCKETS);
            let bucket = bit % BUCKETS;
            if let Some(m) = self.verify_bucket(cur, end, bucket) {
                return Some(m);
            }
        }
        None
    }

    /// Verify whether there are any matches starting at `at` in the given
    /// `haystack` corresponding only to patterns in the given bucket.
    ///
    /// # Safety
    ///
    /// The given pointers representing the haystack must be valid to read
    /// from.
    ///
    /// The bucket index must be less than or equal to `self.buckets.len()`.
    #[inline(always)]
    unsafe fn verify_bucket(
        &self,
        cur: *const u8,
        end: *const u8,
        bucket: usize,
    ) -> Option<Match> {
        debug_assert!(bucket < self.buckets.len());
        // SAFETY: The caller must ensure that the bucket index is correct.
        for pid in self.buckets.get_unchecked(bucket).iter().copied() {
            // SAFETY: This is safe because we are guaranteed that every
            // index in a Teddy bucket is a valid index into `pats`, by
            // construction.
            debug_assert!(pid.as_usize() < self.patterns.len());
            let pat = self.patterns.get_unchecked(pid);
            if pat.is_prefix_raw(cur, end) {
                let start = cur;
                let end = start.add(pat.len());
                return Some(Match { pid, start, end });
            }
        }
        None
    }

    /// Returns the total number of masks required by the patterns in this
    /// Teddy searcher.
    ///
    /// Basically, the mask length corresponds to the type of Teddy searcher
    /// to use: a 1-byte, 2-byte, 3-byte or 4-byte searcher. The bigger the
    /// better, typically, since searching for longer substrings usually
    /// decreases the rate of false positives. Therefore, the number of masks
    /// needed is the length of the shortest pattern in this searcher. If the
    /// length of the shortest pattern (in bytes) is bigger than 4, then the
    /// mask length is 4 since there are no Teddy searchers for more than 4
    /// bytes.
    fn mask_len(&self) -> usize {
        core::cmp::min(4, self.patterns.minimum_len())
    }

    /// Returns the approximate total amount of heap used by this type, in
    /// units of bytes.
    fn memory_usage(&self) -> usize {
        // This is an upper bound rather than a precise accounting. No
        // particular reason, other than it's probably very close to actual
        // memory usage in practice.
        self.patterns.len() * core::mem::size_of::<PatternID>()
    }
}

impl Teddy<8> {
    /// Runs the verification routine for "slim" Teddy.
    ///
    /// The candidate given should be a collection of 8-bit bitsets (one bitset
    /// per lane), where the ith bit is set in the jth lane if and only if the
    /// byte occurring at `at + j` in `cur` is in the bucket `i`.
    ///
    /// # Safety
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    ///
    /// The given pointers must be valid to read from.
    #[inline(always)]
    unsafe fn verify<V: Vector>(
        &self,
        mut cur: *const u8,
        end: *const u8,
        candidate: V,
    ) -> Option<Match> {
        debug_assert!(!candidate.is_zero());
        // Convert the candidate into 64-bit chunks, and then verify each of
        // those chunks.
        candidate.for_each_64bit_lane(
            #[inline(always)]
            |_, chunk| {
                let result = self.verify64(cur, end, chunk);
                cur = cur.add(8);
                result
            },
        )
    }
}

impl Teddy<16> {
    /// Runs the verification routine for "fat" Teddy.
    ///
    /// The candidate given should be a collection of 8-bit bitsets (one bitset
    /// per lane), where the ith bit is set in the jth lane if and only if the
    /// byte occurring at `at + (j < 16 ? j : j - 16)` in `cur` is in the
    /// bucket `j < 16 ? i : i + 8`.
    ///
    /// # Safety
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    ///
    /// The given pointers must be valid to read from.
    #[inline(always)]
    unsafe fn verify<V: FatVector>(
        &self,
        mut cur: *const u8,
        end: *const u8,
        candidate: V,
    ) -> Option<Match> {
        // This is a bit tricky, but we basically want to convert our
        // candidate, which looks like this (assuming a 256-bit vector):
        //
        //     a31 a30 ... a17 a16 a15 a14 ... a01 a00
        //
        // where each a(i) is an 8-bit bitset corresponding to the activated
        // buckets, to this
        //
        //     a31 a15 a30 a14 a29 a13 ... a18 a02 a17 a01 a16 a00
        //
        // Namely, for Fat Teddy, the high 128-bits of the candidate correspond
        // to the same bytes in the haystack in the low 128-bits (so we only
        // scan 16 bytes at a time), but are for buckets 8-15 instead of 0-7.
        //
        // The verification routine wants to look at all potentially matching
        // buckets before moving on to the next lane. So for example, both
        // a16 and a00 both correspond to the first byte in our window; a00
        // contains buckets 0-7 and a16 contains buckets 8-15. Specifically,
        // a16 should be checked before a01. So the transformation shown above
        // allows us to use our normal verification procedure with one small
        // change: we treat each bitset as 16 bits instead of 8 bits.
        debug_assert!(!candidate.is_zero());

        // Swap the 128-bit lanes in the candidate vector.
        let swapped = candidate.swap_halves();
        // Interleave the bytes from the low 128-bit lanes, starting with
        // cand first.
        let r1 = candidate.interleave_low_8bit_lanes(swapped);
        // Interleave the bytes from the high 128-bit lanes, starting with
        // cand first.
        let r2 = candidate.interleave_high_8bit_lanes(swapped);
        // Now just take the 2 low 64-bit integers from both r1 and r2. We
        // can drop the high 64-bit integers because they are a mirror image
        // of the low 64-bit integers. All we care about are the low 128-bit
        // lanes of r1 and r2. Combined, they contain all our 16-bit bitsets
        // laid out in the desired order, as described above.
        r1.for_each_low_64bit_lane(
            r2,
            #[inline(always)]
            |_, chunk| {
                let result = self.verify64(cur, end, chunk);
                cur = cur.add(4);
                result
            },
        )
    }
}

/// A vector generic mask for the low and high nybbles in a set of patterns.
/// Each 8-bit lane `j` in a vector corresponds to a bitset where the `i`th bit
/// is set if and only if the nybble `j` is in the bucket `i` at a particular
/// position.
///
/// This is slightly tweaked dependending on whether Slim or Fat Teddy is being
/// used. For Slim Teddy, the bitsets in the lower half are the same as the
/// bitsets in the higher half, so that we can search `V::BYTES` bytes at a
/// time. (Remember, the nybbles in the haystack are used as indices into these
/// masks, and 256-bit shuffles only operate on 128-bit lanes.)
///
/// For Fat Teddy, the bitsets are not repeated, but instead, the high half
/// bits correspond to an addition 8 buckets. So that a bitset `00100010` has
/// buckets 1 and 5 set if it's in the lower half, but has buckets 9 and 13 set
/// if it's in the higher half.
#[derive(Clone, Copy, Debug)]
struct Mask<V> {
    lo: V,
    hi: V,
}

impl<V: Vector> Mask<V> {
    /// Return a candidate for Teddy (fat or slim) that is searching for 1-byte
    /// candidates.
    ///
    /// If a candidate is returned, it will be a collection of 8-bit bitsets
    /// (one bitset per lane), where the ith bit is set in the jth lane if and
    /// only if the byte occurring at the jth lane in `chunk` is in the bucket
    /// `i`. If no candidate is found, then the vector returned will have all
    /// lanes set to zero.
    ///
    /// `chunk` should correspond to a `V::BYTES` window of the haystack (where
    /// the least significant byte corresponds to the start of the window). For
    /// fat Teddy, the haystack window length should be `V::BYTES / 2`, with
    /// the window repeated in each half of the vector.
    ///
    /// `mask1` should correspond to a low/high mask for the first byte of all
    /// patterns that are being searched.
    #[inline(always)]
    unsafe fn members1(chunk: V, masks: [Mask<V>; 1]) -> V {
        let lomask = V::splat(0xF);
        let hlo = chunk.and(lomask);
        let hhi = chunk.shift_8bit_lane_right::<4>().and(lomask);
        let locand = masks[0].lo.shuffle_bytes(hlo);
        let hicand = masks[0].hi.shuffle_bytes(hhi);
        locand.and(hicand)
    }

    /// Return a candidate for Teddy (fat or slim) that is searching for 2-byte
    /// candidates.
    ///
    /// If candidates are returned, each will be a collection of 8-bit bitsets
    /// (one bitset per lane), where the ith bit is set in the jth lane if and
    /// only if the byte occurring at the jth lane in `chunk` is in the bucket
    /// `i`. Each candidate returned corresponds to the first and second bytes
    /// of the patterns being searched. If no candidate is found, then all of
    /// the lanes will be set to zero in at least one of the vectors returned.
    ///
    /// `chunk` should correspond to a `V::BYTES` window of the haystack (where
    /// the least significant byte corresponds to the start of the window). For
    /// fat Teddy, the haystack window length should be `V::BYTES / 2`, with
    /// the window repeated in each half of the vector.
    ///
    /// The masks should correspond to the masks computed for the first and
    /// second bytes of all patterns that are being searched.
    #[inline(always)]
    unsafe fn members2(chunk: V, masks: [Mask<V>; 2]) -> (V, V) {
        let lomask = V::splat(0xF);
        let hlo = chunk.and(lomask);
        let hhi = chunk.shift_8bit_lane_right::<4>().and(lomask);

        let locand1 = masks[0].lo.shuffle_bytes(hlo);
        let hicand1 = masks[0].hi.shuffle_bytes(hhi);
        let cand1 = locand1.and(hicand1);

        let locand2 = masks[1].lo.shuffle_bytes(hlo);
        let hicand2 = masks[1].hi.shuffle_bytes(hhi);
        let cand2 = locand2.and(hicand2);

        (cand1, cand2)
    }

    /// Return a candidate for Teddy (fat or slim) that is searching for 3-byte
    /// candidates.
    ///
    /// If candidates are returned, each will be a collection of 8-bit bitsets
    /// (one bitset per lane), where the ith bit is set in the jth lane if and
    /// only if the byte occurring at the jth lane in `chunk` is in the bucket
    /// `i`. Each candidate returned corresponds to the first, second and third
    /// bytes of the patterns being searched. If no candidate is found, then
    /// all of the lanes will be set to zero in at least one of the vectors
    /// returned.
    ///
    /// `chunk` should correspond to a `V::BYTES` window of the haystack (where
    /// the least significant byte corresponds to the start of the window). For
    /// fat Teddy, the haystack window length should be `V::BYTES / 2`, with
    /// the window repeated in each half of the vector.
    ///
    /// The masks should correspond to the masks computed for the first, second
    /// and third bytes of all patterns that are being searched.
    #[inline(always)]
    unsafe fn members3(chunk: V, masks: [Mask<V>; 3]) -> (V, V, V) {
        let lomask = V::splat(0xF);
        let hlo = chunk.and(lomask);
        let hhi = chunk.shift_8bit_lane_right::<4>().and(lomask);

        let locand1 = masks[0].lo.shuffle_bytes(hlo);
        let hicand1 = masks[0].hi.shuffle_bytes(hhi);
        let cand1 = locand1.and(hicand1);

        let locand2 = masks[1].lo.shuffle_bytes(hlo);
        let hicand2 = masks[1].hi.shuffle_bytes(hhi);
        let cand2 = locand2.and(hicand2);

        let locand3 = masks[2].lo.shuffle_bytes(hlo);
        let hicand3 = masks[2].hi.shuffle_bytes(hhi);
        let cand3 = locand3.and(hicand3);

        (cand1, cand2, cand3)
    }

    /// Return a candidate for Teddy (fat or slim) that is searching for 4-byte
    /// candidates.
    ///
    /// If candidates are returned, each will be a collection of 8-bit bitsets
    /// (one bitset per lane), where the ith bit is set in the jth lane if and
    /// only if the byte occurring at the jth lane in `chunk` is in the bucket
    /// `i`. Each candidate returned corresponds to the first, second, third
    /// and fourth bytes of the patterns being searched. If no candidate is
    /// found, then all of the lanes will be set to zero in at least one of the
    /// vectors returned.
    ///
    /// `chunk` should correspond to a `V::BYTES` window of the haystack (where
    /// the least significant byte corresponds to the start of the window). For
    /// fat Teddy, the haystack window length should be `V::BYTES / 2`, with
    /// the window repeated in each half of the vector.
    ///
    /// The masks should correspond to the masks computed for the first,
    /// second, third and fourth bytes of all patterns that are being searched.
    #[inline(always)]
    unsafe fn members4(chunk: V, masks: [Mask<V>; 4]) -> (V, V, V, V) {
        let lomask = V::splat(0xF);
        let hlo = chunk.and(lomask);
        let hhi = chunk.shift_8bit_lane_right::<4>().and(lomask);

        let locand1 = masks[0].lo.shuffle_bytes(hlo);
        let hicand1 = masks[0].hi.shuffle_bytes(hhi);
        let cand1 = locand1.and(hicand1);

        let locand2 = masks[1].lo.shuffle_bytes(hlo);
        let hicand2 = masks[1].hi.shuffle_bytes(hhi);
        let cand2 = locand2.and(hicand2);

        let locand3 = masks[2].lo.shuffle_bytes(hlo);
        let hicand3 = masks[2].hi.shuffle_bytes(hhi);
        let cand3 = locand3.and(hicand3);

        let locand4 = masks[3].lo.shuffle_bytes(hlo);
        let hicand4 = masks[3].hi.shuffle_bytes(hhi);
        let cand4 = locand4.and(hicand4);

        (cand1, cand2, cand3, cand4)
    }
}

/// Represents the low and high nybble masks that will be used during
/// search. Each mask is 32 bytes wide, although only the first 16 bytes are
/// used for 128-bit vectors.
///
/// Each byte in the mask corresponds to a 8-bit bitset, where bit `i` is set
/// if and only if the corresponding nybble is in the ith bucket. The index of
/// the byte (0-15, inclusive) corresponds to the nybble.
///
/// Each mask is used as the target of a shuffle, where the indices for the
/// shuffle are taken from the haystack. AND'ing the shuffles for both the
/// low and high masks together also results in 8-bit bitsets, but where bit
/// `i` is set if and only if the correspond *byte* is in the ith bucket.
#[derive(Clone, Default)]
struct SlimMaskBuilder {
    lo: [u8; 32],
    hi: [u8; 32],
}

impl SlimMaskBuilder {
    /// Update this mask by adding the given byte to the given bucket. The
    /// given bucket must be in the range 0-7.
    ///
    /// # Panics
    ///
    /// When `bucket >= 8`.
    fn add(&mut self, bucket: usize, byte: u8) {
        assert!(bucket < 8);

        let bucket = u8::try_from(bucket).unwrap();
        let byte_lo = usize::from(byte & 0xF);
        let byte_hi = usize::from((byte >> 4) & 0xF);
        // When using 256-bit vectors, we need to set this bucket assignment in
        // the low and high 128-bit portions of the mask. This allows us to
        // process 32 bytes at a time. Namely, AVX2 shuffles operate on each
        // of the 128-bit lanes, rather than the full 256-bit vector at once.
        self.lo[byte_lo] |= 1 << bucket;
        self.lo[byte_lo + 16] |= 1 << bucket;
        self.hi[byte_hi] |= 1 << bucket;
        self.hi[byte_hi + 16] |= 1 << bucket;
    }

    /// Turn this builder into a vector mask.
    ///
    /// # Panics
    ///
    /// When `V` represents a vector bigger than what `MaskBytes` can contain.
    ///
    /// # Safety
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    #[inline(always)]
    unsafe fn build<V: Vector>(&self) -> Mask<V> {
        assert!(V::BYTES <= self.lo.len());
        assert!(V::BYTES <= self.hi.len());
        Mask {
            lo: V::load_unaligned(self.lo[..].as_ptr()),
            hi: V::load_unaligned(self.hi[..].as_ptr()),
        }
    }

    /// A convenience function for building `N` vector masks from a slim
    /// `Teddy` value.
    ///
    /// # Panics
    ///
    /// When `V` represents a vector bigger than what `MaskBytes` can contain.
    ///
    /// # Safety
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    #[inline(always)]
    unsafe fn from_teddy<const BYTES: usize, V: Vector>(
        teddy: &Teddy<8>,
    ) -> [Mask<V>; BYTES] {
        // MSRV(1.63): Use core::array::from_fn to just build the array here
        // instead of creating a vector and turning it into an array.
        let mut mask_builders = vec![SlimMaskBuilder::default(); BYTES];
        for (bucket_index, bucket) in teddy.buckets.iter().enumerate() {
            for pid in bucket.iter().copied() {
                let pat = teddy.patterns.get(pid);
                for (i, builder) in mask_builders.iter_mut().enumerate() {
                    builder.add(bucket_index, pat.bytes()[i]);
                }
            }
        }
        let array =
            <[SlimMaskBuilder; BYTES]>::try_from(mask_builders).unwrap();
        array.map(|builder| builder.build())
    }
}

impl Debug for SlimMaskBuilder {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        let (mut parts_lo, mut parts_hi) = (vec![], vec![]);
        for i in 0..32 {
            parts_lo.push(format!("{:02}: {:08b}", i, self.lo[i]));
            parts_hi.push(format!("{:02}: {:08b}", i, self.hi[i]));
        }
        f.debug_struct("SlimMaskBuilder")
            .field("lo", &parts_lo)
            .field("hi", &parts_hi)
            .finish()
    }
}

/// Represents the low and high nybble masks that will be used during "fat"
/// Teddy search.
///
/// Each mask is 32 bytes wide, and at the time of writing, only 256-bit vectors
/// support fat Teddy.
///
/// A fat Teddy mask is like a slim Teddy mask, except that instead of
/// repeating the bitsets in the high and low 128-bits in 256-bit vectors, the
/// high and low 128-bit halves each represent distinct buckets. (Bringing the
/// total to 16 instead of 8.) This permits spreading the patterns out a bit
/// more and thus putting less pressure on verification to be fast.
///
/// Each byte in the mask corresponds to a 8-bit bitset, where bit `i` is set
/// if and only if the corresponding nybble is in the ith bucket. The index of
/// the byte (0-15, inclusive) corresponds to the nybble.
#[derive(Clone, Copy, Default)]
struct FatMaskBuilder {
    lo: [u8; 32],
    hi: [u8; 32],
}

impl FatMaskBuilder {
    /// Update this mask by adding the given byte to the given bucket. The
    /// given bucket must be in the range 0-15.
    ///
    /// # Panics
    ///
    /// When `bucket >= 16`.
    fn add(&mut self, bucket: usize, byte: u8) {
        assert!(bucket < 16);

        let bucket = u8::try_from(bucket).unwrap();
        let byte_lo = usize::from(byte & 0xF);
        let byte_hi = usize::from((byte >> 4) & 0xF);
        // Unlike slim teddy, fat teddy only works with AVX2. For fat teddy,
        // the high 128 bits of our mask correspond to buckets 8-15, while the
        // low 128 bits correspond to buckets 0-7.
        if bucket < 8 {
            self.lo[byte_lo] |= 1 << bucket;
            self.hi[byte_hi] |= 1 << bucket;
        } else {
            self.lo[byte_lo + 16] |= 1 << (bucket % 8);
            self.hi[byte_hi + 16] |= 1 << (bucket % 8);
        }
    }

    /// Turn this builder into a vector mask.
    ///
    /// # Panics
    ///
    /// When `V` represents a vector bigger than what `MaskBytes` can contain.
    ///
    /// # Safety
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    #[inline(always)]
    unsafe fn build<V: Vector>(&self) -> Mask<V> {
        assert!(V::BYTES <= self.lo.len());
        assert!(V::BYTES <= self.hi.len());
        Mask {
            lo: V::load_unaligned(self.lo[..].as_ptr()),
            hi: V::load_unaligned(self.hi[..].as_ptr()),
        }
    }

    /// A convenience function for building `N` vector masks from a fat
    /// `Teddy` value.
    ///
    /// # Panics
    ///
    /// When `V` represents a vector bigger than what `MaskBytes` can contain.
    ///
    /// # Safety
    ///
    /// Callers must ensure that this is okay to call in the current target for
    /// the current CPU.
    #[inline(always)]
    unsafe fn from_teddy<const BYTES: usize, V: Vector>(
        teddy: &Teddy<16>,
    ) -> [Mask<V>; BYTES] {
        // MSRV(1.63): Use core::array::from_fn to just build the array here
        // instead of creating a vector and turning it into an array.
        let mut mask_builders = vec![FatMaskBuilder::default(); BYTES];
        for (bucket_index, bucket) in teddy.buckets.iter().enumerate() {
            for pid in bucket.iter().copied() {
                let pat = teddy.patterns.get(pid);
                for (i, builder) in mask_builders.iter_mut().enumerate() {
                    builder.add(bucket_index, pat.bytes()[i]);
                }
            }
        }
        let array =
            <[FatMaskBuilder; BYTES]>::try_from(mask_builders).unwrap();
        array.map(|builder| builder.build())
    }
}

impl Debug for FatMaskBuilder {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        let (mut parts_lo, mut parts_hi) = (vec![], vec![]);
        for i in 0..32 {
            parts_lo.push(format!("{:02}: {:08b}", i, self.lo[i]));
            parts_hi.push(format!("{:02}: {:08b}", i, self.hi[i]));
        }
        f.debug_struct("FatMaskBuilder")
            .field("lo", &parts_lo)
            .field("hi", &parts_hi)
            .finish()
    }
}