1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
use alloc::{sync::Arc, vec, vec::Vec};

use crate::{packed::pattern::Patterns, util::search::Match, PatternID};

/// The type of the rolling hash used in the Rabin-Karp algorithm.
type Hash = usize;

/// The number of buckets to store our patterns in. We don't want this to be
/// too big in order to avoid wasting memory, but we don't want it to be too
/// small either to avoid spending too much time confirming literals.
///
/// The number of buckets MUST be a power of two. Otherwise, determining the
/// bucket from a hash will slow down the code considerably. Using a power
/// of two means `hash % NUM_BUCKETS` can compile down to a simple `and`
/// instruction.
const NUM_BUCKETS: usize = 64;

/// An implementation of the Rabin-Karp algorithm. The main idea of this
/// algorithm is to maintain a rolling hash as it moves through the input, and
/// then check whether that hash corresponds to the same hash for any of the
/// patterns we're looking for.
///
/// A draw back of naively scaling Rabin-Karp to multiple patterns is that
/// it requires all of the patterns to be the same length, which in turn
/// corresponds to the number of bytes to hash. We adapt this to work for
/// multiple patterns of varying size by fixing the number of bytes to hash
/// to be the length of the smallest pattern. We also split the patterns into
/// several buckets to hopefully make the confirmation step faster.
///
/// Wikipedia has a decent explanation, if a bit heavy on the theory:
/// https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm
///
/// But ESMAJ provides something a bit more concrete:
/// https://www-igm.univ-mlv.fr/~lecroq/string/node5.html
#[derive(Clone, Debug)]
pub(crate) struct RabinKarp {
    /// The patterns we're searching for.
    patterns: Arc<Patterns>,
    /// The order of patterns in each bucket is significant. Namely, they are
    /// arranged such that the first one to match is the correct match. This
    /// may not necessarily correspond to the order provided by the caller.
    /// For example, if leftmost-longest semantics are used, then the patterns
    /// are sorted by their length in descending order. If leftmost-first
    /// semantics are used, then the patterns are sorted by their pattern ID
    /// in ascending order (which corresponds to the caller's order).
    buckets: Vec<Vec<(Hash, PatternID)>>,
    /// The length of the hashing window. Generally, this corresponds to the
    /// length of the smallest pattern.
    hash_len: usize,
    /// The factor to subtract out of a hash before updating it with a new
    /// byte.
    hash_2pow: usize,
}

impl RabinKarp {
    /// Compile a new Rabin-Karp matcher from the patterns given.
    ///
    /// This panics if any of the patterns in the collection are empty, or if
    /// the collection is itself empty.
    pub(crate) fn new(patterns: &Arc<Patterns>) -> RabinKarp {
        assert!(patterns.len() >= 1);
        let hash_len = patterns.minimum_len();
        assert!(hash_len >= 1);

        let mut hash_2pow = 1usize;
        for _ in 1..hash_len {
            hash_2pow = hash_2pow.wrapping_shl(1);
        }

        let mut rk = RabinKarp {
            patterns: Arc::clone(patterns),
            buckets: vec![vec![]; NUM_BUCKETS],
            hash_len,
            hash_2pow,
        };
        for (id, pat) in patterns.iter() {
            let hash = rk.hash(&pat.bytes()[..rk.hash_len]);
            let bucket = hash % NUM_BUCKETS;
            rk.buckets[bucket].push((hash, id));
        }
        rk
    }

    /// Return the first matching pattern in the given haystack, begining the
    /// search at `at`.
    pub(crate) fn find_at(
        &self,
        haystack: &[u8],
        mut at: usize,
    ) -> Option<Match> {
        assert_eq!(NUM_BUCKETS, self.buckets.len());

        if at + self.hash_len > haystack.len() {
            return None;
        }
        let mut hash = self.hash(&haystack[at..at + self.hash_len]);
        loop {
            let bucket = &self.buckets[hash % NUM_BUCKETS];
            for &(phash, pid) in bucket {
                if phash == hash {
                    if let Some(c) = self.verify(pid, haystack, at) {
                        return Some(c);
                    }
                }
            }
            if at + self.hash_len >= haystack.len() {
                return None;
            }
            hash = self.update_hash(
                hash,
                haystack[at],
                haystack[at + self.hash_len],
            );
            at += 1;
        }
    }

    /// Returns the approximate total amount of heap used by this searcher, in
    /// units of bytes.
    pub(crate) fn memory_usage(&self) -> usize {
        self.buckets.len() * core::mem::size_of::<Vec<(Hash, PatternID)>>()
            + self.patterns.len() * core::mem::size_of::<(Hash, PatternID)>()
    }

    /// Verify whether the pattern with the given id matches at
    /// `haystack[at..]`.
    ///
    /// We tag this function as `cold` because it helps improve codegen.
    /// Intuitively, it would seem like inlining it would be better. However,
    /// the only time this is called and a match is not found is when there
    /// there is a hash collision, or when a prefix of a pattern matches but
    /// the entire pattern doesn't match. This is hopefully fairly rare, and
    /// if it does occur a lot, it's going to be slow no matter what we do.
    #[cold]
    fn verify(
        &self,
        id: PatternID,
        haystack: &[u8],
        at: usize,
    ) -> Option<Match> {
        let pat = self.patterns.get(id);
        if pat.is_prefix(&haystack[at..]) {
            Some(Match::new(id, at..at + pat.len()))
        } else {
            None
        }
    }

    /// Hash the given bytes.
    fn hash(&self, bytes: &[u8]) -> Hash {
        assert_eq!(self.hash_len, bytes.len());

        let mut hash = 0usize;
        for &b in bytes {
            hash = hash.wrapping_shl(1).wrapping_add(b as usize);
        }
        hash
    }

    /// Update the hash given based on removing `old_byte` at the beginning
    /// of some byte string, and appending `new_byte` to the end of that same
    /// byte string.
    fn update_hash(&self, prev: Hash, old_byte: u8, new_byte: u8) -> Hash {
        prev.wrapping_sub((old_byte as usize).wrapping_mul(self.hash_2pow))
            .wrapping_shl(1)
            .wrapping_add(new_byte as usize)
    }
}