allocator_api2/stable/
slice.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
use crate::{
    alloc::{Allocator, Global},
    vec::Vec,
};

/// Slice methods that use `Box` and `Vec` from this crate.
pub trait SliceExt<T> {
    /// Copies `self` into a new `Vec`.
    ///
    /// # Examples
    ///
    /// ```
    /// let s = [10, 40, 30];
    /// let x = s.to_vec();
    /// // Here, `s` and `x` can be modified independently.
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[inline(always)]
    fn to_vec(&self) -> Vec<T, Global>
    where
        T: Clone,
    {
        self.to_vec_in(Global)
    }

    /// Copies `self` into a new `Vec` with an allocator.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::alloc::System;
    ///
    /// let s = [10, 40, 30];
    /// let x = s.to_vec_in(System);
    /// // Here, `s` and `x` can be modified independently.
    /// ```
    #[cfg(not(no_global_oom_handling))]
    fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
    where
        T: Clone;

    /// Creates a vector by copying a slice `n` times.
    ///
    /// # Panics
    ///
    /// This function will panic if the capacity would overflow.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
    /// ```
    ///
    /// A panic upon overflow:
    ///
    /// ```should_panic
    /// // this will panic at runtime
    /// b"0123456789abcdef".repeat(usize::MAX);
    /// ```
    fn repeat(&self, n: usize) -> Vec<T, Global>
    where
        T: Copy;
}

impl<T> SliceExt<T> for [T] {
    #[cfg(not(no_global_oom_handling))]
    #[inline]
    fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
    where
        T: Clone,
    {
        struct DropGuard<'a, T, A: Allocator> {
            vec: &'a mut Vec<T, A>,
            num_init: usize,
        }
        impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
            #[inline]
            fn drop(&mut self) {
                // SAFETY:
                // items were marked initialized in the loop below
                unsafe {
                    self.vec.set_len(self.num_init);
                }
            }
        }

        let mut vec = Vec::with_capacity_in(self.len(), alloc);
        let mut guard = DropGuard {
            vec: &mut vec,
            num_init: 0,
        };
        let slots = guard.vec.spare_capacity_mut();
        // .take(slots.len()) is necessary for LLVM to remove bounds checks
        // and has better codegen than zip.
        for (i, b) in self.iter().enumerate().take(slots.len()) {
            guard.num_init = i;
            slots[i].write(b.clone());
        }
        core::mem::forget(guard);
        // SAFETY:
        // the vec was allocated and initialized above to at least this length.
        unsafe {
            vec.set_len(self.len());
        }
        vec
    }

    #[cfg(not(no_global_oom_handling))]
    #[inline]
    fn repeat(&self, n: usize) -> Vec<T, Global>
    where
        T: Copy,
    {
        if n == 0 {
            return Vec::new();
        }

        // If `n` is larger than zero, it can be split as
        // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
        // `2^expn` is the number represented by the leftmost '1' bit of `n`,
        // and `rem` is the remaining part of `n`.

        // Using `Vec` to access `set_len()`.
        let capacity = self.len().checked_mul(n).expect("capacity overflow");
        let mut buf = Vec::with_capacity(capacity);

        // `2^expn` repetition is done by doubling `buf` `expn`-times.
        buf.extend(self);
        {
            let mut m = n >> 1;
            // If `m > 0`, there are remaining bits up to the leftmost '1'.
            while m > 0 {
                // `buf.extend(buf)`:
                unsafe {
                    core::ptr::copy_nonoverlapping(
                        buf.as_ptr(),
                        (buf.as_mut_ptr() as *mut T).add(buf.len()),
                        buf.len(),
                    );
                    // `buf` has capacity of `self.len() * n`.
                    let buf_len = buf.len();
                    buf.set_len(buf_len * 2);
                }

                m >>= 1;
            }
        }

        // `rem` (`= n - 2^expn`) repetition is done by copying
        // first `rem` repetitions from `buf` itself.
        let rem_len = capacity - buf.len(); // `self.len() * rem`
        if rem_len > 0 {
            // `buf.extend(buf[0 .. rem_len])`:
            unsafe {
                // This is non-overlapping since `2^expn > rem`.
                core::ptr::copy_nonoverlapping(
                    buf.as_ptr(),
                    (buf.as_mut_ptr() as *mut T).add(buf.len()),
                    rem_len,
                );
                // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
                buf.set_len(capacity);
            }
        }
        buf
    }
}