allocator_api2/stable/vec/
drain.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
use core::fmt;
use core::iter::FusedIterator;
use core::mem::{self, size_of, ManuallyDrop};
use core::ptr::{self, NonNull};
use core::slice::{self};

use crate::stable::alloc::{Allocator, Global};

use super::Vec;

/// A draining iterator for `Vec<T>`.
///
/// This `struct` is created by [`Vec::drain`].
/// See its documentation for more.
///
/// # Example
///
/// ```
/// let mut v = vec![0, 1, 2];
/// let iter: std::vec::Drain<_> = v.drain(..);
/// ```
pub struct Drain<'a, T: 'a, A: Allocator + 'a = Global> {
    /// Index of tail to preserve
    pub(super) tail_start: usize,
    /// Length of tail
    pub(super) tail_len: usize,
    /// Current remaining range to remove
    pub(super) iter: slice::Iter<'a, T>,
    pub(super) vec: NonNull<Vec<T, A>>,
}

impl<T: fmt::Debug, A: Allocator> fmt::Debug for Drain<'_, T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("Drain").field(&self.iter.as_slice()).finish()
    }
}

impl<'a, T, A: Allocator> Drain<'a, T, A> {
    /// Returns the remaining items of this iterator as a slice.
    ///
    /// # Examples
    ///
    /// ```
    /// let mut vec = vec!['a', 'b', 'c'];
    /// let mut drain = vec.drain(..);
    /// assert_eq!(drain.as_slice(), &['a', 'b', 'c']);
    /// let _ = drain.next().unwrap();
    /// assert_eq!(drain.as_slice(), &['b', 'c']);
    /// ```
    #[must_use]
    #[inline(always)]
    pub fn as_slice(&self) -> &[T] {
        self.iter.as_slice()
    }

    /// Returns a reference to the underlying allocator.
    #[must_use]
    #[inline(always)]
    pub fn allocator(&self) -> &A {
        unsafe { self.vec.as_ref().allocator() }
    }

    /// Keep unyielded elements in the source `Vec`.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(drain_keep_rest)]
    ///
    /// let mut vec = vec!['a', 'b', 'c'];
    /// let mut drain = vec.drain(..);
    ///
    /// assert_eq!(drain.next().unwrap(), 'a');
    ///
    /// // This call keeps 'b' and 'c' in the vec.
    /// drain.keep_rest();
    ///
    /// // If we wouldn't call `keep_rest()`,
    /// // `vec` would be empty.
    /// assert_eq!(vec, ['b', 'c']);
    /// ```
    #[inline(always)]
    pub fn keep_rest(self) {
        // At this moment layout looks like this:
        //
        // [head] [yielded by next] [unyielded] [yielded by next_back] [tail]
        //        ^-- start         \_________/-- unyielded_len        \____/-- self.tail_len
        //                          ^-- unyielded_ptr                  ^-- tail
        //
        // Normally `Drop` impl would drop [unyielded] and then move [tail] to the `start`.
        // Here we want to
        // 1. Move [unyielded] to `start`
        // 2. Move [tail] to a new start at `start + len(unyielded)`
        // 3. Update length of the original vec to `len(head) + len(unyielded) + len(tail)`
        //    a. In case of ZST, this is the only thing we want to do
        // 4. Do *not* drop self, as everything is put in a consistent state already, there is nothing to do
        let mut this = ManuallyDrop::new(self);

        unsafe {
            let source_vec = this.vec.as_mut();

            let start = source_vec.len();
            let tail = this.tail_start;

            let unyielded_len = this.iter.len();
            let unyielded_ptr = this.iter.as_slice().as_ptr();

            // ZSTs have no identity, so we don't need to move them around.
            let needs_move = mem::size_of::<T>() != 0;

            if needs_move {
                let start_ptr = source_vec.as_mut_ptr().add(start);

                // memmove back unyielded elements
                if unyielded_ptr != start_ptr {
                    let src = unyielded_ptr;
                    let dst = start_ptr;

                    ptr::copy(src, dst, unyielded_len);
                }

                // memmove back untouched tail
                if tail != (start + unyielded_len) {
                    let src = source_vec.as_ptr().add(tail);
                    let dst = start_ptr.add(unyielded_len);
                    ptr::copy(src, dst, this.tail_len);
                }
            }

            source_vec.set_len(start + unyielded_len + this.tail_len);
        }
    }
}

impl<'a, T, A: Allocator> AsRef<[T]> for Drain<'a, T, A> {
    #[inline(always)]
    fn as_ref(&self) -> &[T] {
        self.as_slice()
    }
}

unsafe impl<T: Sync, A: Sync + Allocator> Sync for Drain<'_, T, A> {}

unsafe impl<T: Send, A: Send + Allocator> Send for Drain<'_, T, A> {}

impl<T, A: Allocator> Iterator for Drain<'_, T, A> {
    type Item = T;

    #[inline(always)]
    fn next(&mut self) -> Option<T> {
        self.iter
            .next()
            .map(|elt| unsafe { ptr::read(elt as *const _) })
    }

    #[inline(always)]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> {
    #[inline(always)]
    fn next_back(&mut self) -> Option<T> {
        self.iter
            .next_back()
            .map(|elt| unsafe { ptr::read(elt as *const _) })
    }
}

impl<T, A: Allocator> Drop for Drain<'_, T, A> {
    #[inline]
    fn drop(&mut self) {
        /// Moves back the un-`Drain`ed elements to restore the original `Vec`.
        struct DropGuard<'r, 'a, T, A: Allocator>(&'r mut Drain<'a, T, A>);

        impl<'r, 'a, T, A: Allocator> Drop for DropGuard<'r, 'a, T, A> {
            fn drop(&mut self) {
                if self.0.tail_len > 0 {
                    unsafe {
                        let source_vec = self.0.vec.as_mut();
                        // memmove back untouched tail, update to new length
                        let start = source_vec.len();
                        let tail = self.0.tail_start;
                        if tail != start {
                            let src = source_vec.as_ptr().add(tail);
                            let dst = source_vec.as_mut_ptr().add(start);
                            ptr::copy(src, dst, self.0.tail_len);
                        }
                        source_vec.set_len(start + self.0.tail_len);
                    }
                }
            }
        }

        let iter = mem::replace(&mut self.iter, [].iter());
        let drop_len = iter.len();

        let mut vec = self.vec;

        if size_of::<T>() == 0 {
            // ZSTs have no identity, so we don't need to move them around, we only need to drop the correct amount.
            // this can be achieved by manipulating the Vec length instead of moving values out from `iter`.
            unsafe {
                let vec = vec.as_mut();
                let old_len = vec.len();
                vec.set_len(old_len + drop_len + self.tail_len);
                vec.truncate(old_len + self.tail_len);
            }

            return;
        }

        // ensure elements are moved back into their appropriate places, even when drop_in_place panics
        let _guard = DropGuard(self);

        if drop_len == 0 {
            return;
        }

        // as_slice() must only be called when iter.len() is > 0 because
        // vec::Splice modifies vec::Drain fields and may grow the vec which would invalidate
        // the iterator's internal pointers. Creating a reference to deallocated memory
        // is invalid even when it is zero-length
        let drop_ptr = iter.as_slice().as_ptr();

        unsafe {
            // drop_ptr comes from a slice::Iter which only gives us a &[T] but for drop_in_place
            // a pointer with mutable provenance is necessary. Therefore we must reconstruct
            // it from the original vec but also avoid creating a &mut to the front since that could
            // invalidate raw pointers to it which some unsafe code might rely on.
            let vec_ptr = vec.as_mut().as_mut_ptr();
            let drop_offset = drop_ptr.offset_from(vec_ptr) as usize;
            let to_drop = ptr::slice_from_raw_parts_mut(vec_ptr.add(drop_offset), drop_len);
            ptr::drop_in_place(to_drop);
        }
    }
}

impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> {}

impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {}