alloy_dyn_abi/dynamic/
value.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
use super::ty::as_tuple;
use crate::{DynSolType, DynToken, Word};
use alloc::{borrow::Cow, boxed::Box, string::String, vec::Vec};
use alloy_primitives::{Address, Function, I256, U256};
use alloy_sol_types::{abi::Encoder, utils::words_for_len};

#[cfg(feature = "eip712")]
macro_rules! as_fixed_seq {
    ($tuple:tt) => {
        Self::CustomStruct { tuple: $tuple, .. } | Self::FixedArray($tuple) | Self::Tuple($tuple)
    };
}
#[cfg(not(feature = "eip712"))]
macro_rules! as_fixed_seq {
    ($tuple:tt) => {
        Self::FixedArray($tuple) | Self::Tuple($tuple)
    };
}

/// A dynamic Solidity value.
///
/// It is broadly similar to `serde_json::Value` in that it is an enum of
/// possible types, and the user must inspect and disambiguate.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use alloy_dyn_abi::{DynSolType, DynSolValue};
///
/// let ty: DynSolType = "uint64".parse()?;
/// let value: DynSolValue = 183u64.into();
///
/// let encoded: Vec<u8> = value.abi_encode();
/// let decoded: DynSolValue = ty.abi_decode(&encoded)?;
///
/// assert_eq!(decoded, value);
/// # Ok::<(), alloy_dyn_abi::Error>(())
/// ```
///
/// Coerce a string using [`DynSolType`]:
///
/// ```
/// use alloy_dyn_abi::{DynSolType, DynSolValue};
/// use alloy_primitives::U256;
///
/// let ty: DynSolType = "(string, uint256)".parse()?;
#[cfg_attr(feature = "std", doc = "let value = ty.coerce_str(\"(foo bar, 2.5 gwei)\")?;")]
#[cfg_attr(not(feature = "std"), doc = "let value = ty.coerce_str(\"(foo bar, 2500000000)\")?;")]
/// assert_eq!(
///     value,
///     DynSolValue::Tuple(vec![
///         DynSolValue::String(String::from("foo bar")),
///         DynSolValue::Uint(U256::from(2_500_000_000u64), 256)
///     ]),
/// );
/// # Ok::<(), alloy_dyn_abi::Error>(())
/// ```
#[derive(Clone, Debug, PartialEq)]
pub enum DynSolValue {
    /// A boolean.
    Bool(bool),
    /// A signed integer. The second parameter is the number of bits, not bytes.
    Int(I256, usize),
    /// An unsigned integer. The second parameter is the number of bits, not bytes.
    Uint(U256, usize),
    /// A fixed-length byte array. The second parameter is the number of bytes.
    FixedBytes(Word, usize),
    /// An address.
    Address(Address),
    /// A function pointer.
    Function(Function),

    /// A dynamic-length byte array.
    Bytes(Vec<u8>),
    /// A string.
    String(String),

    /// A dynamically-sized array of values.
    Array(Vec<DynSolValue>),
    /// A fixed-size array of values.
    FixedArray(Vec<DynSolValue>),
    /// A tuple of values.
    Tuple(Vec<DynSolValue>),

    /// A named struct, treated as a tuple with a name parameter.
    #[cfg(feature = "eip712")]
    CustomStruct {
        /// The name of the struct.
        name: String,
        /// The struct's prop names, in declaration order.
        prop_names: Vec<String>,
        /// The inner types.
        tuple: Vec<DynSolValue>,
    },
}

impl From<Address> for DynSolValue {
    #[inline]
    fn from(value: Address) -> Self {
        Self::Address(value)
    }
}

impl From<bool> for DynSolValue {
    #[inline]
    fn from(value: bool) -> Self {
        Self::Bool(value)
    }
}

impl From<Vec<u8>> for DynSolValue {
    #[inline]
    fn from(value: Vec<u8>) -> Self {
        Self::Bytes(value)
    }
}

impl From<String> for DynSolValue {
    #[inline]
    fn from(value: String) -> Self {
        Self::String(value)
    }
}

impl From<Vec<Self>> for DynSolValue {
    #[inline]
    fn from(value: Vec<Self>) -> Self {
        Self::Array(value)
    }
}

impl<const N: usize> From<[Self; N]> for DynSolValue {
    #[inline]
    fn from(value: [Self; N]) -> Self {
        Self::FixedArray(value.to_vec())
    }
}

macro_rules! impl_from_int {
    ($($t:ty),+) => {$(
        impl From<$t> for DynSolValue {
            #[inline]
            fn from(value: $t) -> Self {
                const BITS: usize = <$t>::BITS as usize;
                const BYTES: usize = BITS / 8;
                const _: () = assert!(BYTES <= 32);

                let mut word = if value.is_negative() {
                    alloy_primitives::B256::repeat_byte(0xff)
                } else {
                    alloy_primitives::B256::ZERO
                };
                word[32 - BYTES..].copy_from_slice(&value.to_be_bytes());

                Self::Int(I256::from_be_bytes(word.0), BITS)
            }
        }
    )+};
}

impl_from_int!(i8, i16, i32, i64, isize, i128);

impl From<I256> for DynSolValue {
    #[inline]
    fn from(value: I256) -> Self {
        Self::Int(value, 256)
    }
}

macro_rules! impl_from_uint {
    ($($t:ty),+) => {$(
        impl From<$t> for DynSolValue {
            #[inline]
            fn from(value: $t) -> Self {
                Self::Uint(U256::from(value), <$t>::BITS as usize)
            }
        }
    )+};
}

impl_from_uint!(u8, u16, u32, u64, usize, u128);

impl From<U256> for DynSolValue {
    #[inline]
    fn from(value: U256) -> Self {
        Self::Uint(value, 256)
    }
}

impl DynSolValue {
    /// The Solidity type. This returns the Solidity type corresponding to this
    /// value, if it is known. A type will not be known if the value contains
    /// an empty sequence, e.g. `T[0]`.
    pub fn as_type(&self) -> Option<DynSolType> {
        let ty = match self {
            Self::Address(_) => DynSolType::Address,
            Self::Function(_) => DynSolType::Function,
            Self::Bool(_) => DynSolType::Bool,
            Self::Bytes(_) => DynSolType::Bytes,
            Self::FixedBytes(_, size) => DynSolType::FixedBytes(*size),
            Self::Int(_, size) => DynSolType::Int(*size),
            Self::Uint(_, size) => DynSolType::Uint(*size),
            Self::String(_) => DynSolType::String,
            Self::Tuple(inner) => {
                return inner
                    .iter()
                    .map(Self::as_type)
                    .collect::<Option<Vec<_>>>()
                    .map(DynSolType::Tuple)
            }
            Self::Array(inner) => DynSolType::Array(Box::new(Self::as_type(inner.first()?)?)),
            Self::FixedArray(inner) => {
                DynSolType::FixedArray(Box::new(Self::as_type(inner.first()?)?), inner.len())
            }
            #[cfg(feature = "eip712")]
            Self::CustomStruct { name, prop_names, tuple } => DynSolType::CustomStruct {
                name: name.clone(),
                prop_names: prop_names.clone(),
                tuple: tuple.iter().map(Self::as_type).collect::<Option<Vec<_>>>()?,
            },
        };
        Some(ty)
    }

    #[inline]
    #[allow(clippy::missing_const_for_fn)]
    fn sol_type_name_simple(&self) -> Option<&'static str> {
        match self {
            Self::Address(_) => Some("address"),
            Self::Function(_) => Some("function"),
            Self::Bool(_) => Some("bool"),
            Self::Bytes(_) => Some("bytes"),
            Self::String(_) => Some("string"),
            _ => None,
        }
    }

    fn sol_type_name_raw(&self, out: &mut String) {
        match self {
            Self::Address(_)
            | Self::Function(_)
            | Self::Bool(_)
            | Self::Bytes(_)
            | Self::String(_) => {
                // SAFETY: `sol_type_name_simple` returns `Some` for these types
                out.push_str(unsafe { self.sol_type_name_simple().unwrap_unchecked() });
            }

            Self::FixedBytes(_, size) | Self::Int(_, size) | Self::Uint(_, size) => {
                let prefix = match self {
                    Self::FixedBytes(..) => "bytes",
                    Self::Int(..) => "int",
                    Self::Uint(..) => "uint",
                    _ => unreachable!(),
                };
                out.push_str(prefix);
                out.push_str(itoa::Buffer::new().format(*size));
            }

            Self::Array(values) | Self::FixedArray(values) => {
                // SAFETY: checked in `sol_type_name_capacity`
                debug_assert!(!values.is_empty());
                unsafe { values.first().unwrap_unchecked() }.sol_type_name_raw(out);

                out.push('[');
                let format_len = match self {
                    Self::Array(_) => false,
                    Self::FixedArray(_) => true,
                    _ => unreachable!(),
                };
                if format_len {
                    out.push_str(itoa::Buffer::new().format(values.len()));
                }
                out.push(']');
            }
            as_tuple!(Self tuple) => {
                out.push('(');
                for (i, val) in tuple.iter().enumerate() {
                    if i > 0 {
                        out.push(',');
                    }
                    val.sol_type_name_raw(out);
                }
                if tuple.len() == 1 {
                    out.push(',');
                }
                out.push(')');
            }
        }
    }

    /// Returns an estimate of the number of bytes needed to format this type.
    /// Returns `None` if it cannot be formatted.
    ///
    /// See `DynSolType::sol_type_name_capacity` for more info.
    fn sol_type_name_capacity(&self) -> Option<usize> {
        match self {
            Self::Bool(_)
            | Self::Int(..)
            | Self::Uint(..)
            | Self::FixedBytes(..)
            | Self::Address(_)
            | Self::Function(_)
            | Self::Bytes(_)
            | Self::String(_) => Some(8),

            Self::Array(t) | Self::FixedArray(t) => {
                t.first().and_then(Self::sol_type_name_capacity).map(|x| x + 8)
            }

            as_tuple!(Self tuple) => {
                tuple.iter().map(Self::sol_type_name_capacity).sum::<Option<usize>>().map(|x| x + 8)
            }
        }
    }

    /// The Solidity type name. This returns the Solidity type corresponding to
    /// this value, if it is known. A type will not be known if the value
    /// contains an empty sequence, e.g. `T[0]`.
    pub fn sol_type_name(&self) -> Option<Cow<'static, str>> {
        if let Some(s) = self.sol_type_name_simple() {
            Some(Cow::Borrowed(s))
        } else if let Some(capacity) = self.sol_type_name_capacity() {
            let mut s = String::with_capacity(capacity);
            self.sol_type_name_raw(&mut s);
            Some(Cow::Owned(s))
        } else {
            None
        }
    }

    /// Trust if this value is encoded as a single word. False otherwise.
    #[inline]
    pub const fn is_word(&self) -> bool {
        matches!(
            self,
            Self::Bool(_)
                | Self::Int(..)
                | Self::Uint(..)
                | Self::FixedBytes(..)
                | Self::Address(_)
        )
    }

    /// Fallible cast to a single word. Will succeed for any single-word type.
    #[inline]
    pub fn as_word(&self) -> Option<Word> {
        match *self {
            Self::Bool(b) => Some(Word::with_last_byte(b as u8)),
            Self::Int(i, _) => Some(i.into()),
            Self::Uint(u, _) => Some(u.into()),
            Self::FixedBytes(w, _) => Some(w),
            Self::Address(a) => Some(a.into_word()),
            Self::Function(f) => Some(f.into_word()),
            _ => None,
        }
    }

    /// Fallible cast to the contents of a variant DynSolValue {.
    #[inline]
    pub const fn as_address(&self) -> Option<Address> {
        match self {
            Self::Address(a) => Some(*a),
            _ => None,
        }
    }

    /// Fallible cast to the contents of a variant.
    #[inline]
    pub const fn as_bool(&self) -> Option<bool> {
        match self {
            Self::Bool(b) => Some(*b),
            _ => None,
        }
    }

    /// Fallible cast to the contents of a variant.
    #[inline]
    pub fn as_bytes(&self) -> Option<&[u8]> {
        match self {
            Self::Bytes(b) => Some(b),
            _ => None,
        }
    }

    /// Fallible cast to the contents of a variant.
    #[inline]
    pub const fn as_fixed_bytes(&self) -> Option<(&[u8], usize)> {
        match self {
            Self::FixedBytes(w, size) => Some((w.as_slice(), *size)),
            _ => None,
        }
    }

    /// Fallible cast to the contents of a variant.
    #[inline]
    pub const fn as_int(&self) -> Option<(I256, usize)> {
        match self {
            Self::Int(w, size) => Some((*w, *size)),
            _ => None,
        }
    }

    /// Fallible cast to the contents of a variant.
    #[inline]
    pub const fn as_uint(&self) -> Option<(U256, usize)> {
        match self {
            Self::Uint(u, size) => Some((*u, *size)),
            _ => None,
        }
    }

    /// Fallible cast to the contents of a variant.
    #[inline]
    pub fn as_str(&self) -> Option<&str> {
        match self {
            Self::String(s) => Some(s),
            _ => None,
        }
    }

    /// Fallible cast to the contents of a variant.
    #[inline]
    pub fn as_tuple(&self) -> Option<&[Self]> {
        match self {
            Self::Tuple(t) => Some(t),
            _ => None,
        }
    }

    /// Fallible cast to the contents of a variant.
    #[inline]
    pub fn as_array(&self) -> Option<&[Self]> {
        match self {
            Self::Array(a) => Some(a),
            _ => None,
        }
    }

    /// Fallible cast to the contents of a variant.
    #[inline]
    pub fn as_fixed_array(&self) -> Option<&[Self]> {
        match self {
            Self::FixedArray(a) => Some(a),
            _ => None,
        }
    }

    /// Fallible cast to the contents of a variant.
    #[inline]
    #[allow(clippy::missing_const_for_fn)]
    pub fn as_custom_struct(&self) -> Option<(&str, &[String], &[Self])> {
        match self {
            #[cfg(feature = "eip712")]
            Self::CustomStruct { name, prop_names, tuple } => Some((name, prop_names, tuple)),
            _ => None,
        }
    }

    /// Returns whether this type is contains a custom struct.
    #[inline]
    #[allow(clippy::missing_const_for_fn)]
    pub fn has_custom_struct(&self) -> bool {
        #[cfg(feature = "eip712")]
        {
            match self {
                Self::CustomStruct { .. } => true,
                Self::Array(t) | Self::FixedArray(t) | Self::Tuple(t) => {
                    t.iter().any(Self::has_custom_struct)
                }
                _ => false,
            }
        }
        #[cfg(not(feature = "eip712"))]
        {
            false
        }
    }

    /// Returns true if the value is a sequence type.
    #[inline]
    pub const fn is_sequence(&self) -> bool {
        matches!(self, as_fixed_seq!(_) | Self::Array(_))
    }

    /// Fallible cast to a fixed-size array. Any of a `FixedArray`, a `Tuple`,
    /// or a `CustomStruct`.
    #[inline]
    pub fn as_fixed_seq(&self) -> Option<&[Self]> {
        match self {
            as_fixed_seq!(tuple) => Some(tuple),
            _ => None,
        }
    }

    /// Fallible conversion to a sequence.
    #[inline]
    #[allow(clippy::missing_const_for_fn)] // erroneous lint
    pub(crate) fn into_fixed_seq(self) -> Option<Vec<Self>> {
        match self {
            as_fixed_seq!(tuple) => Some(tuple),
            _ => None,
        }
    }

    /// Fallible cast to a packed sequence. Any of a String, or a Bytes.
    #[inline]
    pub fn as_packed_seq(&self) -> Option<&[u8]> {
        match self {
            Self::String(s) => Some(s.as_bytes()),
            Self::Bytes(b) => Some(b),
            _ => None,
        }
    }

    /// Returns `true` if the value is an instance of a dynamically sized type.
    #[inline]
    pub fn is_dynamic(&self) -> bool {
        match self {
            Self::Address(_)
            | Self::Function(_)
            | Self::Bool(_)
            | Self::Int(..)
            | Self::Uint(..)
            | Self::FixedBytes(..) => false,
            Self::Bytes(_) | Self::String(_) | Self::Array(_) => true,
            as_fixed_seq!(tuple) => tuple.iter().any(Self::is_dynamic),
        }
    }

    /// Check that these values have the same type as the given [`DynSolType`]s.
    ///
    /// See [`DynSolType::matches`] for more information.
    #[doc(alias = "types_check")] // from ethabi
    #[inline(always)]
    pub fn matches_many(values: &[Self], types: &[DynSolType]) -> bool {
        DynSolType::matches_many(types, values)
    }

    /// Check that this value has the same type as the given [`DynSolType`].
    ///
    /// See [`DynSolType::matches`] for more information.
    #[doc(alias = "type_check")] // from ethabi
    #[inline(always)]
    pub fn matches(&self, ty: &DynSolType) -> bool {
        ty.matches(self)
    }

    /// Returns the number of words this type uses in the head of the ABI blob.
    #[inline]
    pub(crate) fn head_words(&self) -> usize {
        match self.as_fixed_seq() {
            // If dynamic 1 for the length, otherwise the sum of all head words.
            Some(vals) => {
                // `is_dynamic` iterates over all elements, and we need to sum all elements'
                // head words, so do both things at once
                let mut sum = 0;
                for val in vals {
                    if val.is_dynamic() {
                        return 1;
                    }
                    sum += val.head_words();
                }
                sum
            }
            // Just a single word
            None => 1,
        }
    }

    /// Returns the number of words this type uses in the tail of the ABI blob.
    #[inline]
    pub(crate) fn tail_words(&self) -> usize {
        match self {
            // `self.is_word()`
            Self::Address(_)
            | Self::Function(_)
            | Self::Bool(_)
            | Self::FixedBytes(..)
            | Self::Int(..)
            | Self::Uint(..) => 0,

            // `self.as_packed_seq()`
            // 1 for the length, then the body padded to the next word.
            Self::String(s) => 1 + words_for_len(s.len()),
            Self::Bytes(b) => 1 + words_for_len(b.len()),

            // `self.as_fixed_seq()`
            // if static, 0.
            // If dynamic, all words for all elements.
            as_fixed_seq!(tuple) => {
                // `is_dynamic` iterates over all elements, and we need to sum all elements'
                // total words, so do both things at once
                let mut any_dynamic = false;
                let mut sum = 0;
                for val in tuple {
                    any_dynamic = any_dynamic || val.is_dynamic();
                    sum += val.total_words();
                }
                any_dynamic as usize * sum
            }

            // `self.as_array()`
            // 1 for the length. Then all words for all elements.
            Self::Array(vals) => 1 + vals.iter().map(Self::total_words).sum::<usize>(),
        }
    }

    /// Returns the total number of words this type uses in the ABI blob,
    /// assuming it is not the top-level
    #[inline]
    pub(crate) fn total_words(&self) -> usize {
        self.head_words() + self.tail_words()
    }

    /// Append this data to the head of an in-progress blob via the encoder.
    #[inline]
    pub fn head_append(&self, enc: &mut Encoder) {
        match self {
            Self::Address(_)
            | Self::Function(_)
            | Self::Bool(_)
            | Self::FixedBytes(..)
            | Self::Int(..)
            | Self::Uint(..) => enc.append_word(unsafe { self.as_word().unwrap_unchecked() }),

            Self::String(_) | Self::Bytes(_) | Self::Array(_) => enc.append_indirection(),

            as_fixed_seq!(s) => {
                if s.iter().any(Self::is_dynamic) {
                    enc.append_indirection();
                } else {
                    for inner in s {
                        inner.head_append(enc);
                    }
                }
            }
        }
    }

    /// Append this data to the tail of an in-progress blob via the encoder.
    #[inline]
    pub fn tail_append(&self, enc: &mut Encoder) {
        match self {
            Self::Address(_)
            | Self::Function(_)
            | Self::Bool(_)
            | Self::FixedBytes(..)
            | Self::Int(..)
            | Self::Uint(..) => {}

            Self::String(string) => enc.append_packed_seq(string.as_bytes()),
            Self::Bytes(bytes) => enc.append_packed_seq(bytes),

            as_fixed_seq!(s) => {
                if self.is_dynamic() {
                    Self::encode_seq_to(s, enc);
                }
            }

            Self::Array(array) => {
                enc.append_seq_len(array.len());
                Self::encode_seq_to(array, enc);
            }
        }
    }

    /// Non-standard Packed Mode ABI encoding.
    ///
    /// Note that invalid value sizes will saturate to the maximum size, e.g. `Uint(x, 300)` will
    /// behave the same as `Uint(x, 256)`.
    ///
    /// See [`SolType::abi_encode_packed`](alloy_sol_types::SolType::abi_encode_packed) for more
    /// details.
    #[inline]
    pub fn abi_encode_packed(&self) -> Vec<u8> {
        let mut buf = Vec::with_capacity(self.abi_packed_encoded_size());
        self.abi_encode_packed_to(&mut buf);
        buf
    }

    /// Non-standard Packed Mode ABI encoding.
    ///
    /// See [`abi_encode_packed`](Self::abi_encode_packed) for more details.
    pub fn abi_encode_packed_to(&self, buf: &mut Vec<u8>) {
        match self {
            Self::Address(addr) => buf.extend_from_slice(addr.as_slice()),
            Self::Function(func) => buf.extend_from_slice(func.as_slice()),
            Self::Bool(b) => buf.push(*b as u8),
            Self::String(s) => buf.extend_from_slice(s.as_bytes()),
            Self::Bytes(bytes) => buf.extend_from_slice(bytes),
            Self::FixedBytes(word, size) => buf.extend_from_slice(&word[..(*size).min(32)]),
            Self::Int(num, size) => {
                let byte_size = *size / 8;
                let start = 32usize.saturating_sub(byte_size);
                buf.extend_from_slice(&num.to_be_bytes::<32>()[start..]);
            }
            Self::Uint(num, size) => {
                let byte_size = *size / 8;
                let start = 32usize.saturating_sub(byte_size);
                buf.extend_from_slice(&num.to_be_bytes::<32>()[start..]);
            }
            Self::FixedArray(inner) | Self::Array(inner) => {
                for val in inner {
                    // Array elements are left-padded to 32 bytes.
                    if let Some(padding_needed) = 32usize.checked_sub(val.abi_packed_encoded_size())
                    {
                        buf.extend(core::iter::repeat(0).take(padding_needed));
                    }
                    val.abi_encode_packed_to(buf);
                }
            }
            as_tuple!(Self inner) => {
                for val in inner {
                    val.abi_encode_packed_to(buf);
                }
            }
        }
    }

    /// Returns the length of this value when ABI-encoded in Non-standard Packed Mode.
    ///
    /// See [`abi_encode_packed`](Self::abi_encode_packed) for more details.
    pub fn abi_packed_encoded_size(&self) -> usize {
        match self {
            Self::Address(_) | Self::Function(_) => 20,
            Self::Bool(_) => 1,
            Self::String(s) => s.len(),
            Self::Bytes(b) => b.len(),
            Self::FixedBytes(_, size) => (*size).min(32),
            Self::Int(_, size) | Self::Uint(_, size) => (size / 8).min(32),
            Self::FixedArray(inner) | Self::Array(inner) => {
                inner.iter().map(|v| v.abi_packed_encoded_size().max(32)).sum()
            }
            as_tuple!(Self inner) => inner.iter().map(Self::abi_packed_encoded_size).sum(),
        }
    }

    /// Tokenize this value into a [`DynToken`].
    pub fn tokenize(&self) -> DynToken<'_> {
        match self {
            Self::Address(a) => a.into_word().into(),
            Self::Function(f) => f.into_word().into(),
            Self::Bool(b) => Word::with_last_byte(*b as u8).into(),
            Self::Bytes(buf) => DynToken::PackedSeq(buf),
            Self::FixedBytes(buf, _) => (*buf).into(),
            Self::Int(int, _) => int.to_be_bytes::<32>().into(),
            Self::Uint(uint, _) => uint.to_be_bytes::<32>().into(),
            Self::String(s) => DynToken::PackedSeq(s.as_bytes()),
            Self::Array(t) => DynToken::from_dyn_seq(t),
            as_fixed_seq!(t) => DynToken::from_fixed_seq(t),
        }
    }

    /// Encode this data as a sequence.
    pub(crate) fn encode_seq(seq: &[Self]) -> Vec<u8> {
        let sz = seq.iter().map(Self::total_words).sum();
        let mut encoder = Encoder::with_capacity(sz);
        Self::encode_seq_to(seq, &mut encoder);
        encoder.into_bytes()
    }

    /// Encode this data as a sequence into the given encoder.
    pub(crate) fn encode_seq_to(contents: &[Self], enc: &mut Encoder) {
        let head_words = contents.iter().map(Self::head_words).sum::<usize>();
        enc.push_offset(head_words);

        for t in contents {
            t.head_append(enc);
            enc.bump_offset(t.tail_words());
        }

        for t in contents {
            t.tail_append(enc);
        }

        enc.pop_offset();
    }

    /// Encode this value into a byte array by wrapping it into a 1-element
    /// sequence.
    #[inline]
    pub fn abi_encode(&self) -> Vec<u8> {
        Self::encode_seq(core::slice::from_ref(self))
    }

    /// Encode this value into a byte array suitable for passing to a function.
    /// If this value is a tuple, it is encoded as is. Otherwise, it is wrapped
    /// into a 1-element sequence.
    ///
    /// # Examples
    ///
    /// ```ignore (pseudo-code)
    /// // Encoding for function foo(address)
    /// DynSolValue::Address(_).abi_encode_params();
    ///
    /// // Encoding for function foo(address, uint256)
    /// DynSolValue::Tuple(vec![
    ///     DynSolValue::Address(_),
    ///     DynSolValue::Uint(_, 256),
    /// ]).abi_encode_params();
    /// ```
    #[inline]
    pub fn abi_encode_params(&self) -> Vec<u8> {
        match self {
            Self::Tuple(seq) => Self::encode_seq(seq),
            _ => self.abi_encode(),
        }
    }

    /// If this value is a fixed sequence, encode it into a byte array. If this
    /// value is not a fixed sequence, return `None`.
    #[inline]
    pub fn abi_encode_sequence(&self) -> Option<Vec<u8>> {
        self.as_fixed_seq().map(Self::encode_seq)
    }
}