alloy_json_abi/
param.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
use crate::{
    internal_type::BorrowedInternalType,
    utils::{mk_eparam, mk_param, validate_identifier},
    InternalType,
};
use alloc::{borrow::Cow, string::String, vec::Vec};
use core::{fmt, str::FromStr};
use parser::{Error, ParameterSpecifier, TypeSpecifier};
use serde::{de::Unexpected, Deserialize, Deserializer, Serialize, Serializer};

/// JSON specification of a parameter.
///
/// Parameters are the inputs and outputs of [Function]s, and the fields of
/// [Error]s.
///
/// [Function]: crate::Function
/// [Error]: crate::Error
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct Param {
    /// The canonical Solidity type of the parameter, using the word "tuple" to
    /// represent complex types. E.g. `uint256` or `bytes[2]` or `tuple` or
    /// `tuple[2]`.
    ///
    /// Generally, this is a valid [`TypeSpecifier`], but in very rare
    /// circumstances, such as when a function in a library contains an enum
    /// in its parameters or return types, this will be `Contract.EnumName`
    /// instead of the actual type (`uint8`).
    /// Visible for macros, functions inside the crate, and doc tests. It is not recommended to
    /// instantiate directly. Use Param::new instead.
    #[doc(hidden)]
    pub ty: String,
    /// The name of the parameter. This field always contains either the empty
    /// string, or a valid Solidity identifier.
    /// Visible for macros, functions inside the crate, and doc tests. It is not recommended to
    /// instantiate directly. Use Param::new instead.
    #[doc(hidden)]
    pub name: String,
    /// If the parameter is a compound type (a struct or tuple), a list of the
    /// parameter's components, in order. Empty otherwise
    pub components: Vec<Param>,
    /// The internal type of the parameter. This type represents the type that
    /// the author of the Solidity contract specified. E.g. for a contract, this
    /// will be `contract MyContract` while the `type` field will be `address`.
    pub internal_type: Option<InternalType>,
}

impl fmt::Display for Param {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if let Some(it) = &self.internal_type { it.fmt(f) } else { f.write_str(&self.ty) }?;
        f.write_str(" ")?;
        f.write_str(&self.name)
    }
}

impl<'de> Deserialize<'de> for Param {
    fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
        ParamInner::deserialize(deserializer).and_then(|inner| {
            if inner.indexed.is_none() {
                inner.validate_fields()?;
                Ok(Self {
                    name: inner.name,
                    ty: inner.ty,
                    internal_type: inner.internal_type,
                    components: inner.components,
                })
            } else {
                Err(serde::de::Error::custom("indexed is not supported in params"))
            }
        })
    }
}

impl Serialize for Param {
    #[inline]
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        self.as_inner().serialize(serializer)
    }
}

impl FromStr for Param {
    type Err = parser::Error;

    #[inline]
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Self::parse(s)
    }
}

impl Param {
    /// Parse a parameter from a Solidity parameter string.
    ///
    /// # Examples
    ///
    /// ```
    /// # use alloy_json_abi::Param;
    /// assert_eq!(
    ///     Param::parse("uint256[] foo"),
    ///     Ok(Param {
    ///         name: "foo".into(),
    ///         ty: "uint256[]".into(),
    ///         components: vec![],
    ///         internal_type: None,
    ///     })
    /// );
    /// ```
    pub fn parse(input: &str) -> parser::Result<Self> {
        ParameterSpecifier::parse(input).map(|p| mk_param(p.name, p.ty))
    }

    /// Validate and create new instance of Param.
    pub fn new(
        name: &str,
        ty: &str,
        components: Vec<Self>,
        internal_type: Option<InternalType>,
    ) -> parser::Result<Self> {
        Self::validate_fields(name, ty, !components.is_empty())?;
        Ok(Self { ty: ty.into(), name: name.into(), components, internal_type })
    }

    /// The internal type of the parameter.
    #[inline]
    pub const fn internal_type(&self) -> Option<&InternalType> {
        self.internal_type.as_ref()
    }

    /// True if the parameter is a UDT (user-defined type).
    ///
    /// A UDT will have
    /// - an internal type that does not match its canonical type
    /// - no space in its internal type (as it does not have a keyword body)
    ///
    /// Any `Other` specifier will definitely be a UDT if it contains a
    /// contract.
    #[inline]
    pub fn is_udt(&self) -> bool {
        match self.internal_type().and_then(|it| it.as_other()) {
            Some((contract, ty)) => contract.is_some() || (self.is_simple_type() && ty != self.ty),
            _ => false,
        }
    }

    /// True if the parameter is a struct.
    #[inline]
    pub const fn is_struct(&self) -> bool {
        match self.internal_type() {
            Some(ty) => ty.is_struct(),
            None => false,
        }
    }

    /// True if the parameter is an enum.
    #[inline]
    pub const fn is_enum(&self) -> bool {
        match self.internal_type() {
            Some(ty) => ty.is_enum(),
            None => false,
        }
    }

    /// True if the parameter is a contract.
    #[inline]
    pub const fn is_contract(&self) -> bool {
        match self.internal_type() {
            Some(ty) => ty.is_contract(),
            None => false,
        }
    }

    /// The UDT specifier is a [`TypeSpecifier`] containing the UDT name and any
    /// array sizes. It is computed from the `internal_type`. If this param is
    /// not a UDT, this function will return `None`.
    #[inline]
    pub fn udt_specifier(&self) -> Option<TypeSpecifier<'_>> {
        // UDTs are more annoying to check for, so we reuse logic here.
        if !self.is_udt() {
            return None;
        }
        self.internal_type().and_then(|ty| ty.other_specifier())
    }

    /// The struct specifier is a [`TypeSpecifier`] containing the struct name
    /// and any array sizes. It is computed from the `internal_type` If this
    /// param is not a struct, this function will return `None`.
    #[inline]
    pub fn struct_specifier(&self) -> Option<TypeSpecifier<'_>> {
        self.internal_type().and_then(|ty| ty.struct_specifier())
    }

    /// The enum specifier is a [`TypeSpecifier`] containing the enum name and
    /// any array sizes. It is computed from the `internal_type`. If this param
    /// is not a enum, this function will return `None`.
    #[inline]
    pub fn enum_specifier(&self) -> Option<TypeSpecifier<'_>> {
        self.internal_type().and_then(|ty| ty.enum_specifier())
    }

    /// The struct specifier is a [`TypeSpecifier`] containing the contract name
    /// and any array sizes. It is computed from the `internal_type` If this
    /// param is not a struct, this function will return `None`.
    #[inline]
    pub fn contract_specifier(&self) -> Option<TypeSpecifier<'_>> {
        self.internal_type().and_then(|ty| ty.contract_specifier())
    }

    /// True if the type is simple
    #[inline]
    pub fn is_simple_type(&self) -> bool {
        self.components.is_empty()
    }

    /// True if the type is complex (tuple or struct)
    #[inline]
    pub fn is_complex_type(&self) -> bool {
        !self.components.is_empty()
    }

    /// Formats the canonical type of this parameter into the given string.
    ///
    /// This is used to encode the preimage of a function or error selector.
    #[inline]
    pub fn selector_type_raw(&self, s: &mut String) {
        if self.components.is_empty() {
            s.push_str(&self.ty);
        } else {
            crate::utils::params_abi_tuple(&self.components, s);
            // checked during deserialization, but might be invalid from a user
            if let Some(suffix) = self.ty.strip_prefix("tuple") {
                s.push_str(suffix);
            }
        }
    }

    /// Formats the canonical type of this parameter into the given string including then names of
    /// the params.
    #[inline]
    pub fn full_selector_type_raw(&self, s: &mut String) {
        if self.components.is_empty() {
            s.push_str(&self.ty);
        } else {
            s.push_str("tuple");
            crate::utils::params_tuple(&self.components, s);
            // checked during deserialization, but might be invalid from a user
            if let Some(suffix) = self.ty.strip_prefix("tuple") {
                s.push_str(suffix);
            }
        }
    }

    /// Returns the canonical type of this parameter.
    ///
    /// This is used to encode the preimage of a function or error selector.
    #[inline]
    pub fn selector_type(&self) -> Cow<'_, str> {
        if self.components.is_empty() {
            Cow::Borrowed(&self.ty)
        } else {
            let mut s = String::with_capacity(self.components.len() * 32);
            self.selector_type_raw(&mut s);
            Cow::Owned(s)
        }
    }

    #[inline]
    fn borrowed_internal_type(&self) -> Option<BorrowedInternalType<'_>> {
        self.internal_type().as_ref().map(|it| it.as_borrowed())
    }

    #[inline]
    fn as_inner(&self) -> BorrowedParamInner<'_> {
        BorrowedParamInner {
            name: &self.name,
            ty: &self.ty,
            indexed: None,
            internal_type: self.borrowed_internal_type(),
            components: Cow::Borrowed(&self.components),
        }
    }

    #[inline]
    fn validate_fields(name: &str, ty: &str, has_components: bool) -> parser::Result<()> {
        if !name.is_empty() && !parser::is_valid_identifier(name) {
            return Err(Error::invalid_identifier_string(name));
        }

        // any components means type is "tuple" + maybe brackets, so we can skip
        // parsing with TypeSpecifier
        if !has_components {
            parser::TypeSpecifier::parse(ty)?;
        } else {
            // https://docs.soliditylang.org/en/latest/abi-spec.html#handling-tuple-types
            // checking for "tuple" prefix should be enough
            if !ty.starts_with("tuple") {
                return Err(Error::invalid_type_string(ty));
            }
        }
        Ok(())
    }
}

/// A Solidity Event parameter.
///
/// Event parameters are distinct from function parameters in that they have an
/// `indexed` field.
#[derive(Clone, Debug, Default, PartialEq, Eq, Hash)]
pub struct EventParam {
    /// The canonical Solidity type of the parameter, using the word "tuple" to
    /// represent complex types. E.g. `uint256` or `bytes[2]` or `tuple` or
    /// `tuple[2]`.
    ///
    /// Generally, this is a valid [`TypeSpecifier`], but in very rare
    /// circumstances, such as when a function in a library contains an enum
    /// in its parameters or return types, this will be `Contract.EnumName`
    /// instead of the actual type (`uint8`).
    /// Visible for macros, functions inside the crate, and doc tests. It is not recommended to
    /// instantiate directly. Use Param::new instead.
    #[doc(hidden)]
    pub ty: String,
    /// The name of the parameter. This field always contains either the empty
    /// string, or a valid Solidity identifier.
    /// Visible for macros, functions inside the crate, and doc tests. It is not recommended to
    /// instantiate directly. Use Param::new instead.
    #[doc(hidden)]
    pub name: String,
    /// Whether the parameter is indexed. Indexed parameters have their
    /// value, or the hash of their value, stored in the log topics.
    pub indexed: bool,
    /// If the parameter is a compound type (a struct or tuple), a list of the
    /// parameter's components, in order. Empty otherwise. Because the
    /// components are not top-level event params, they will not have an
    /// `indexed` field.
    pub components: Vec<Param>,
    /// The internal type of the parameter. This type represents the type that
    /// the author of the Solidity contract specified. E.g. for a contract, this
    /// will be `contract MyContract` while the `type` field will be `address`.
    pub internal_type: Option<InternalType>,
}

impl fmt::Display for EventParam {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if let Some(it) = &self.internal_type { it.fmt(f) } else { f.write_str(&self.ty) }?;
        f.write_str(" ")?;
        f.write_str(&self.name)
    }
}

impl<'de> Deserialize<'de> for EventParam {
    fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
        ParamInner::deserialize(deserializer).and_then(|inner| {
            inner.validate_fields()?;
            Ok(Self {
                name: inner.name,
                ty: inner.ty,
                indexed: inner.indexed.unwrap_or(false),
                internal_type: inner.internal_type.map(Into::into),
                components: inner.components,
            })
        })
    }
}

impl Serialize for EventParam {
    #[inline]
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        self.as_inner().serialize(serializer)
    }
}

impl FromStr for EventParam {
    type Err = parser::Error;

    #[inline]
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Self::parse(s)
    }
}

impl EventParam {
    /// Parse an event parameter from a Solidity parameter string.
    ///
    /// # Examples
    ///
    /// ```
    /// # use std::panic::catch_unwind;
    /// use alloy_json_abi::EventParam;
    /// assert_eq!(
    ///     EventParam::parse("uint256[] indexed foo"),
    ///     Ok(EventParam {
    ///         name: "foo".into(),
    ///         ty: "uint256[]".into(),
    ///         indexed: true,
    ///         components: vec![],
    ///         internal_type: None,
    ///     })
    /// );
    /// ```
    #[inline]
    pub fn parse(input: &str) -> parser::Result<Self> {
        ParameterSpecifier::parse(input).map(mk_eparam)
    }

    /// Validate and create new instance of EventParam
    pub fn new(
        name: &str,
        ty: &str,
        indexed: bool,
        components: Vec<Param>,
        internal_type: Option<InternalType>,
    ) -> parser::Result<Self> {
        Param::validate_fields(name, ty, !components.is_empty())?;
        Ok(Self { name: name.into(), ty: ty.into(), indexed, components, internal_type })
    }

    /// The internal type of the parameter.
    #[inline]
    pub const fn internal_type(&self) -> Option<&InternalType> {
        self.internal_type.as_ref()
    }

    /// True if the parameter is a UDT (user-defined type).
    ///
    /// A UDT will have
    /// - an internal type that does not match its canonical type
    /// - no space in its internal type (as it does not have a keyword body)
    ///
    /// Any `Other` specifier will definitely be a UDT if it contains a
    /// contract.
    #[inline]
    pub fn is_udt(&self) -> bool {
        match self.internal_type().and_then(|it| it.as_other()) {
            Some((contract, ty)) => contract.is_some() || (self.is_simple_type() && ty != self.ty),
            _ => false,
        }
    }

    /// True if the parameter is a struct.
    #[inline]
    pub const fn is_struct(&self) -> bool {
        match self.internal_type() {
            Some(ty) => ty.is_struct(),
            None => false,
        }
    }

    /// True if the parameter is an enum.
    #[inline]
    pub const fn is_enum(&self) -> bool {
        match self.internal_type() {
            Some(ty) => ty.is_enum(),
            None => false,
        }
    }

    /// True if the parameter is a contract.
    #[inline]
    pub const fn is_contract(&self) -> bool {
        match self.internal_type() {
            Some(ty) => ty.is_contract(),
            None => false,
        }
    }

    /// The UDT specifier is a [`TypeSpecifier`] containing the UDT name and any
    /// array sizes. It is computed from the `internal_type`. If this param is
    /// not a UDT, this function will return `None`.
    #[inline]
    pub fn udt_specifier(&self) -> Option<TypeSpecifier<'_>> {
        // UDTs are more annoying to check for, so we reuse logic here.
        if !self.is_udt() {
            return None;
        }
        self.internal_type().and_then(|ty| ty.other_specifier())
    }

    /// The struct specifier is a [`TypeSpecifier`] containing the struct name
    /// and any array sizes. It is computed from the `internal_type` If this
    /// param is not a struct, this function will return `None`.
    #[inline]
    pub fn struct_specifier(&self) -> Option<TypeSpecifier<'_>> {
        self.internal_type().and_then(|ty| ty.struct_specifier())
    }

    /// The enum specifier is a [`TypeSpecifier`] containing the enum name and
    /// any array sizes. It is computed from the `internal_type`. If this param
    /// is not a enum, this function will return `None`.
    #[inline]
    pub fn enum_specifier(&self) -> Option<TypeSpecifier<'_>> {
        self.internal_type().and_then(|ty| ty.enum_specifier())
    }

    /// The struct specifier is a [`TypeSpecifier`] containing the contract name
    /// and any array sizes. It is computed from the `internal_type` If this
    /// param is not a struct, this function will return `None`.
    #[inline]
    pub fn contract_specifier(&self) -> Option<TypeSpecifier<'_>> {
        self.internal_type().and_then(|ty| ty.contract_specifier())
    }

    /// True if the type is simple
    #[inline]
    pub fn is_simple_type(&self) -> bool {
        self.components.is_empty()
    }

    /// True if the type is complex (tuple or struct)
    #[inline]
    pub fn is_complex_type(&self) -> bool {
        !self.components.is_empty()
    }

    /// Formats the canonical type of this parameter into the given string.
    ///
    /// This is used to encode the preimage of the event selector.
    #[inline]
    pub fn selector_type_raw(&self, s: &mut String) {
        if self.components.is_empty() {
            s.push_str(&self.ty);
        } else {
            crate::utils::params_abi_tuple(&self.components, s);
            // checked during deserialization, but might be invalid from a user
            if let Some(suffix) = self.ty.strip_prefix("tuple") {
                s.push_str(suffix);
            }
        }
    }

    /// Formats the canonical type of this parameter into the given string including then names of
    /// the params.
    #[inline]
    pub fn full_selector_type_raw(&self, s: &mut String) {
        if self.components.is_empty() {
            s.push_str(&self.ty);
        } else {
            s.push_str("tuple");
            crate::utils::params_tuple(&self.components, s);
            // checked during deserialization, but might be invalid from a user
            if let Some(suffix) = self.ty.strip_prefix("tuple") {
                s.push_str(suffix);
            }
        }
    }

    /// Returns the canonical type of this parameter.
    ///
    /// This is used to encode the preimage of the event selector.
    #[inline]
    pub fn selector_type(&self) -> Cow<'_, str> {
        if self.components.is_empty() {
            Cow::Borrowed(&self.ty)
        } else {
            let mut s = String::with_capacity(self.components.len() * 32);
            self.selector_type_raw(&mut s);
            Cow::Owned(s)
        }
    }

    #[inline]
    fn borrowed_internal_type(&self) -> Option<BorrowedInternalType<'_>> {
        self.internal_type().as_ref().map(|it| it.as_borrowed())
    }

    #[inline]
    fn as_inner(&self) -> BorrowedParamInner<'_> {
        BorrowedParamInner {
            name: &self.name,
            ty: &self.ty,
            indexed: Some(self.indexed),
            internal_type: self.borrowed_internal_type(),
            components: Cow::Borrowed(&self.components),
        }
    }
}

#[derive(Deserialize)]
struct ParamInner {
    #[serde(default)]
    name: String,
    #[serde(rename = "type")]
    ty: String,
    #[serde(default, skip_serializing_if = "Option::is_none")]
    indexed: Option<bool>,
    #[serde(rename = "internalType", default, skip_serializing_if = "Option::is_none")]
    internal_type: Option<InternalType>,
    #[serde(default, skip_serializing_if = "Vec::is_empty")]
    components: Vec<Param>,
}

impl Serialize for ParamInner {
    #[inline]
    fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
        self.as_borrowed().serialize(serializer)
    }
}

impl ParamInner {
    #[inline]
    fn validate_fields<E: serde::de::Error>(&self) -> Result<(), E> {
        self.as_borrowed().validate_fields()
    }

    #[inline]
    fn as_borrowed(&self) -> BorrowedParamInner<'_> {
        BorrowedParamInner {
            name: &self.name,
            ty: &self.ty,
            indexed: self.indexed,
            internal_type: self.internal_type.as_ref().map(InternalType::as_borrowed),
            components: Cow::Borrowed(&self.components),
        }
    }
}

#[derive(Serialize, Deserialize)]
struct BorrowedParamInner<'a> {
    #[serde(default)]
    name: &'a str,
    #[serde(rename = "type")]
    ty: &'a str,
    #[serde(default, skip_serializing_if = "Option::is_none")]
    indexed: Option<bool>,
    #[serde(rename = "internalType", default, skip_serializing_if = "Option::is_none")]
    internal_type: Option<BorrowedInternalType<'a>>,
    #[serde(default, skip_serializing_if = "<[_]>::is_empty")]
    components: Cow<'a, [Param]>,
}

impl BorrowedParamInner<'_> {
    fn validate_fields<E: serde::de::Error>(&self) -> Result<(), E> {
        validate_identifier(self.name)?;

        // any components means type is "tuple" + maybe brackets, so we can skip
        // parsing with TypeSpecifier
        if self.components.is_empty() {
            if parser::TypeSpecifier::parse(self.ty).is_err() {
                return Err(E::invalid_value(
                    Unexpected::Str(self.ty),
                    &"a valid Solidity type specifier",
                ));
            }
        } else {
            // https://docs.soliditylang.org/en/latest/abi-spec.html#handling-tuple-types
            // checking for "tuple" prefix should be enough
            if !self.ty.starts_with("tuple") {
                return Err(E::invalid_value(
                    Unexpected::Str(self.ty),
                    &"a string prefixed with `tuple`, optionally followed by a sequence of `[]` or `[k]` with integers `k`",
                ));
            }
        }

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn param_from_json() {
        let param = r#"{
            "internalType": "string",
            "name": "reason",
            "type": "string"
        }"#;
        let expected = Param {
            name: "reason".into(),
            ty: "string".into(),
            internal_type: Some(InternalType::Other { contract: None, ty: "string".into() }),
            components: vec![],
        };

        assert_eq!(serde_json::from_str::<Param>(param).unwrap(), expected);

        let param_value = serde_json::from_str::<serde_json::Value>(param).unwrap();
        assert_eq!(serde_json::from_value::<Param>(param_value).unwrap(), expected);

        #[cfg(feature = "std")]
        {
            let reader = std::io::Cursor::new(param);
            assert_eq!(serde_json::from_reader::<_, Param>(reader).unwrap(), expected);
        }
    }

    #[test]
    fn param_from_new() {
        let param = Param::new("something", "string", vec![], None);
        assert_eq!(
            param,
            Ok(Param {
                name: "something".into(),
                ty: "string".into(),
                components: vec![],
                internal_type: None,
            })
        );

        let err_not_a_type = Param::new("something", "not a type", vec![], None);
        assert!(err_not_a_type.is_err());

        let err_not_tuple = Param::new("something", "string", vec![param.unwrap()], None);
        assert!(err_not_tuple.is_err())
    }
}