alloy_primitives/signature/
primitive_sig.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
#![allow(unknown_lints, unnameable_types)]

use crate::{hex, normalize_v, signature::SignatureError, uint, U256};
use alloc::vec::Vec;
use core::str::FromStr;

/// The order of the secp256k1 curve
const SECP256K1N_ORDER: U256 =
    uint!(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141_U256);

/// An Ethereum ECDSA signature.
#[derive(Clone, Copy, Debug, Hash, PartialEq, Eq)]
pub struct PrimitiveSignature {
    y_parity: bool,
    r: U256,
    s: U256,
}

impl<'a> TryFrom<&'a [u8]> for PrimitiveSignature {
    type Error = SignatureError;

    /// Parses a raw signature which is expected to be 65 bytes long where
    /// the first 32 bytes is the `r` value, the second 32 bytes the `s` value
    /// and the final byte is the `v` value in 'Electrum' notation.
    fn try_from(bytes: &'a [u8]) -> Result<Self, Self::Error> {
        if bytes.len() != 65 {
            return Err(SignatureError::FromBytes("expected exactly 65 bytes"));
        }
        let parity =
            normalize_v(bytes[64] as u64).ok_or(SignatureError::InvalidParity(bytes[64] as u64))?;
        Ok(Self::from_bytes_and_parity(&bytes[..64], parity))
    }
}

impl FromStr for PrimitiveSignature {
    type Err = SignatureError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let bytes = hex::decode(s)?;
        Self::try_from(&bytes[..])
    }
}

impl From<&PrimitiveSignature> for [u8; 65] {
    #[inline]
    fn from(value: &PrimitiveSignature) -> [u8; 65] {
        value.as_bytes()
    }
}

impl From<PrimitiveSignature> for [u8; 65] {
    #[inline]
    fn from(value: PrimitiveSignature) -> [u8; 65] {
        value.as_bytes()
    }
}

impl From<&PrimitiveSignature> for Vec<u8> {
    #[inline]
    fn from(value: &PrimitiveSignature) -> Self {
        value.as_bytes().to_vec()
    }
}

impl From<PrimitiveSignature> for Vec<u8> {
    #[inline]
    fn from(value: PrimitiveSignature) -> Self {
        value.as_bytes().to_vec()
    }
}

#[cfg(feature = "k256")]
impl From<(k256::ecdsa::Signature, k256::ecdsa::RecoveryId)> for PrimitiveSignature {
    fn from(value: (k256::ecdsa::Signature, k256::ecdsa::RecoveryId)) -> Self {
        Self::from_signature_and_parity(value.0, value.1.is_y_odd())
    }
}

#[cfg(feature = "k256")]
impl TryFrom<PrimitiveSignature> for k256::ecdsa::Signature {
    type Error = k256::ecdsa::Error;

    fn try_from(value: PrimitiveSignature) -> Result<Self, Self::Error> {
        value.to_k256()
    }
}

#[cfg(feature = "rlp")]
impl PrimitiveSignature {
    /// Decode an RLP-encoded VRS signature. Accepts `decode_parity` closure which allows to
    /// customize parity decoding and possibly extract additional data from it (e.g chain_id for
    /// legacy signature).
    pub fn decode_rlp_vrs(
        buf: &mut &[u8],
        decode_parity: impl FnOnce(&mut &[u8]) -> alloy_rlp::Result<bool>,
    ) -> Result<Self, alloy_rlp::Error> {
        use alloy_rlp::Decodable;

        let parity = decode_parity(buf)?;
        let r = Decodable::decode(buf)?;
        let s = Decodable::decode(buf)?;

        Ok(Self::new(r, s, parity))
    }
}

impl PrimitiveSignature {
    #[doc(hidden)]
    pub fn test_signature() -> Self {
        Self::from_scalars_and_parity(
            b256!("840cfc572845f5786e702984c2a582528cad4b49b2a10b9db1be7fca90058565"),
            b256!("25e7109ceb98168d95b09b18bbf6b685130e0562f233877d492b94eee0c5b6d1"),
            false,
        )
    }

    /// Instantiate a new signature from `r`, `s`, and `v` values.
    #[allow(clippy::missing_const_for_fn)]
    pub fn new(r: U256, s: U256, v: bool) -> Self {
        Self { r, s, y_parity: v }
    }

    /// Returns the inner ECDSA signature.
    #[cfg(feature = "k256")]
    #[deprecated(note = "use `Signature::to_k256` instead")]
    #[inline]
    pub fn into_inner(self) -> k256::ecdsa::Signature {
        self.try_into().expect("signature conversion failed")
    }

    /// Returns the inner ECDSA signature.
    #[cfg(feature = "k256")]
    #[inline]
    pub fn to_k256(self) -> Result<k256::ecdsa::Signature, k256::ecdsa::Error> {
        k256::ecdsa::Signature::from_scalars(self.r.to_be_bytes(), self.s.to_be_bytes())
    }

    /// Instantiate from a signature and recovery id
    #[cfg(feature = "k256")]
    pub fn from_signature_and_parity(sig: k256::ecdsa::Signature, v: bool) -> Self {
        let r = U256::from_be_slice(sig.r().to_bytes().as_ref());
        let s = U256::from_be_slice(sig.s().to_bytes().as_ref());
        Self { y_parity: v, r, s }
    }

    /// Creates a [`PrimitiveSignature`] from the serialized `r` and `s` scalar values, which
    /// comprise the ECDSA signature, alongside a `v` value, used to determine the recovery ID.
    #[inline]
    pub fn from_scalars_and_parity(r: crate::B256, s: crate::B256, parity: bool) -> Self {
        Self::new(U256::from_be_slice(r.as_ref()), U256::from_be_slice(s.as_ref()), parity)
    }

    /// Normalizes the signature into "low S" form as described in
    /// [BIP 0062: Dealing with Malleability][1].
    ///
    /// [1]: https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
    #[inline]
    pub fn normalize_s(&self) -> Option<Self> {
        let s = self.s();

        if s > SECP256K1N_ORDER >> 1 {
            Some(Self { y_parity: !self.y_parity, r: self.r, s: SECP256K1N_ORDER - s })
        } else {
            None
        }
    }

    /// Returns the recovery ID.
    #[cfg(feature = "k256")]
    #[inline]
    pub const fn recid(&self) -> k256::ecdsa::RecoveryId {
        k256::ecdsa::RecoveryId::new(self.y_parity, false)
    }

    #[cfg(feature = "k256")]
    #[doc(hidden)]
    #[deprecated(note = "use `Signature::recid` instead")]
    pub const fn recovery_id(&self) -> k256::ecdsa::RecoveryId {
        self.recid()
    }

    /// Recovers an [`Address`] from this signature and the given message by first prefixing and
    /// hashing the message according to [EIP-191](crate::eip191_hash_message).
    ///
    /// [`Address`]: crate::Address
    #[cfg(feature = "k256")]
    #[inline]
    pub fn recover_address_from_msg<T: AsRef<[u8]>>(
        &self,
        msg: T,
    ) -> Result<crate::Address, SignatureError> {
        self.recover_from_msg(msg).map(|vk| crate::Address::from_public_key(&vk))
    }

    /// Recovers an [`Address`] from this signature and the given prehashed message.
    ///
    /// [`Address`]: crate::Address
    #[cfg(feature = "k256")]
    #[inline]
    pub fn recover_address_from_prehash(
        &self,
        prehash: &crate::B256,
    ) -> Result<crate::Address, SignatureError> {
        self.recover_from_prehash(prehash).map(|vk| crate::Address::from_public_key(&vk))
    }

    /// Recovers a [`VerifyingKey`] from this signature and the given message by first prefixing and
    /// hashing the message according to [EIP-191](crate::eip191_hash_message).
    ///
    /// [`VerifyingKey`]: k256::ecdsa::VerifyingKey
    #[cfg(feature = "k256")]
    #[inline]
    pub fn recover_from_msg<T: AsRef<[u8]>>(
        &self,
        msg: T,
    ) -> Result<k256::ecdsa::VerifyingKey, SignatureError> {
        self.recover_from_prehash(&crate::eip191_hash_message(msg))
    }

    /// Recovers a [`VerifyingKey`] from this signature and the given prehashed message.
    ///
    /// [`VerifyingKey`]: k256::ecdsa::VerifyingKey
    #[cfg(feature = "k256")]
    #[inline]
    pub fn recover_from_prehash(
        &self,
        prehash: &crate::B256,
    ) -> Result<k256::ecdsa::VerifyingKey, SignatureError> {
        let this = self.normalize_s().unwrap_or(*self);
        k256::ecdsa::VerifyingKey::recover_from_prehash(
            prehash.as_slice(),
            &this.to_k256()?,
            this.recid(),
        )
        .map_err(Into::into)
    }

    /// Parses a signature from a byte slice, with a v value
    ///
    /// # Panics
    ///
    /// If the slice is not at least 64 bytes long.
    #[inline]
    pub fn from_bytes_and_parity(bytes: &[u8], parity: bool) -> Self {
        let r = U256::from_be_slice(&bytes[..32]);
        let s = U256::from_be_slice(&bytes[32..64]);
        Self::new(r, s, parity)
    }

    /// Returns the `r` component of this signature.
    #[inline]
    pub const fn r(&self) -> U256 {
        self.r
    }

    /// Returns the `s` component of this signature.
    #[inline]
    pub const fn s(&self) -> U256 {
        self.s
    }

    /// Returns the recovery ID as a `bool`.
    #[inline]
    pub const fn v(&self) -> bool {
        self.y_parity
    }

    /// Returns the byte-array representation of this signature.
    ///
    /// The first 32 bytes are the `r` value, the second 32 bytes the `s` value
    /// and the final byte is the `v` value in 'Electrum' notation.
    #[inline]
    pub fn as_bytes(&self) -> [u8; 65] {
        let mut sig = [0u8; 65];
        sig[..32].copy_from_slice(&self.r.to_be_bytes::<32>());
        sig[32..64].copy_from_slice(&self.s.to_be_bytes::<32>());
        sig[64] = 27 + self.y_parity as u8;
        sig
    }

    /// Sets the recovery ID by normalizing a `v` value.
    #[inline]
    pub const fn with_parity(self, v: bool) -> Self {
        Self { y_parity: v, r: self.r, s: self.s }
    }

    /// Length of RLP RS field encoding
    #[cfg(feature = "rlp")]
    pub fn rlp_rs_len(&self) -> usize {
        alloy_rlp::Encodable::length(&self.r) + alloy_rlp::Encodable::length(&self.s)
    }

    /// Write R and S to an RLP buffer in progress.
    #[cfg(feature = "rlp")]
    pub fn write_rlp_rs(&self, out: &mut dyn alloy_rlp::BufMut) {
        alloy_rlp::Encodable::encode(&self.r, out);
        alloy_rlp::Encodable::encode(&self.s, out);
    }

    /// Write the VRS to the output.
    #[cfg(feature = "rlp")]
    pub fn write_rlp_vrs(&self, out: &mut dyn alloy_rlp::BufMut, v: impl alloy_rlp::Encodable) {
        v.encode(out);
        self.write_rlp_rs(out);
    }
}

#[cfg(feature = "arbitrary")]
impl<'a> arbitrary::Arbitrary<'a> for PrimitiveSignature {
    fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
        Ok(Self::new(u.arbitrary()?, u.arbitrary()?, u.arbitrary()?))
    }
}

#[cfg(feature = "arbitrary")]
impl proptest::arbitrary::Arbitrary for PrimitiveSignature {
    type Parameters = ();
    type Strategy = proptest::strategy::Map<
        <(U256, U256, bool) as proptest::arbitrary::Arbitrary>::Strategy,
        fn((U256, U256, bool)) -> Self,
    >;

    fn arbitrary_with((): Self::Parameters) -> Self::Strategy {
        use proptest::strategy::Strategy;
        proptest::arbitrary::any::<(U256, U256, bool)>()
            .prop_map(|(r, s, parity)| Self::new(r, s, parity))
    }
}

#[cfg(feature = "serde")]
mod signature_serde {
    use serde::{Deserialize, Deserializer, Serialize};

    use crate::{U256, U64};

    use super::PrimitiveSignature;

    #[derive(Serialize, Deserialize)]
    struct HumanReadableRepr {
        r: U256,
        s: U256,
        #[serde(rename = "yParity")]
        y_parity: Option<U64>,
        #[serde(default, skip_serializing_if = "Option::is_none")]
        v: Option<U64>,
    }

    #[derive(Serialize, Deserialize)]
    #[serde(transparent)]
    struct NonHumanReadableRepr((U256, U256, U64));

    impl Serialize for PrimitiveSignature {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where
            S: serde::Serializer,
        {
            // if the serializer is human readable, serialize as a map, otherwise as a tuple
            if serializer.is_human_readable() {
                HumanReadableRepr {
                    y_parity: Some(U64::from(self.y_parity as u64)),
                    v: Some(U64::from(self.y_parity as u64)),
                    r: self.r,
                    s: self.s,
                }
                .serialize(serializer)
            } else {
                NonHumanReadableRepr((self.r, self.s, U64::from(self.y_parity as u64)))
                    .serialize(serializer)
            }
        }
    }

    impl<'de> Deserialize<'de> for PrimitiveSignature {
        fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where
            D: Deserializer<'de>,
        {
            let (y_parity, r, s) = if deserializer.is_human_readable() {
                let HumanReadableRepr { y_parity, v, r, s } = <_>::deserialize(deserializer)?;
                let y_parity = y_parity
                    .or(v)
                    .ok_or_else(|| serde::de::Error::custom("missing `yParity` or `v`"))?;
                (y_parity, r, s)
            } else {
                let NonHumanReadableRepr((r, s, y_parity)) = <_>::deserialize(deserializer)?;
                (y_parity, r, s)
            };

            if y_parity > U64::from(1) {
                Err(serde::de::Error::custom("invalid y_parity"))
            } else {
                Ok(Self::new(r, s, y_parity == U64::from(1)))
            }
        }
    }
}

#[cfg(test)]
#[allow(unused_imports)]
mod tests {
    use super::*;
    use crate::Bytes;
    use core::str::FromStr;
    use hex::FromHex;

    #[cfg(feature = "rlp")]
    use alloy_rlp::{Decodable, Encodable};

    #[test]
    #[cfg(feature = "k256")]
    fn can_recover_tx_sender_not_normalized() {
        let sig = PrimitiveSignature::from_str("48b55bfa915ac795c431978d8a6a992b628d557da5ff759b307d495a36649353efffd310ac743f371de3b9f7f9cb56c0b28ad43601b4ab949f53faa07bd2c8041b").unwrap();
        let hash = b256!("5eb4f5a33c621f32a8622d5f943b6b102994dfe4e5aebbefe69bb1b2aa0fc93e");
        let expected = address!("0f65fe9276bc9a24ae7083ae28e2660ef72df99e");
        assert_eq!(sig.recover_address_from_prehash(&hash).unwrap(), expected);
    }

    #[test]
    #[cfg(feature = "k256")]
    fn recover_web3_signature() {
        // test vector taken from:
        // https://web3js.readthedocs.io/en/v1.2.2/web3-eth-accounts.html#sign
        let sig = PrimitiveSignature::from_str(
            "b91467e570a6466aa9e9876cbcd013baba02900b8979d43fe208a4a4f339f5fd6007e74cd82e037b800186422fc2da167c747ef045e5d18a5f5d4300f8e1a0291c"
        ).expect("could not parse signature");
        let expected = address!("2c7536E3605D9C16a7a3D7b1898e529396a65c23");
        assert_eq!(sig.recover_address_from_msg("Some data").unwrap(), expected);
    }

    #[test]
    fn signature_from_str() {
        let s1 = PrimitiveSignature::from_str(
            "0xaa231fbe0ed2b5418e6ba7c19bee2522852955ec50996c02a2fe3e71d30ddaf1645baf4823fea7cb4fcc7150842493847cfb6a6d63ab93e8ee928ee3f61f503500"
        ).expect("could not parse 0x-prefixed signature");

        let s2 = PrimitiveSignature::from_str(
            "aa231fbe0ed2b5418e6ba7c19bee2522852955ec50996c02a2fe3e71d30ddaf1645baf4823fea7cb4fcc7150842493847cfb6a6d63ab93e8ee928ee3f61f503500"
        ).expect("could not parse non-prefixed signature");

        assert_eq!(s1, s2);
    }

    #[cfg(feature = "serde")]
    #[test]
    fn deserialize_with_parity() {
        let raw_signature_with_y_parity = serde_json::json!({
            "r": "0xc569c92f176a3be1a6352dd5005bfc751dcb32f57623dd2a23693e64bf4447b0",
            "s": "0x1a891b566d369e79b7a66eecab1e008831e22daa15f91a0a0cf4f9f28f47ee05",
            "v": "0x1",
            "yParity": "0x1"
        });

        let signature: PrimitiveSignature =
            serde_json::from_value(raw_signature_with_y_parity).unwrap();

        let expected = PrimitiveSignature::new(
            U256::from_str("0xc569c92f176a3be1a6352dd5005bfc751dcb32f57623dd2a23693e64bf4447b0")
                .unwrap(),
            U256::from_str("0x1a891b566d369e79b7a66eecab1e008831e22daa15f91a0a0cf4f9f28f47ee05")
                .unwrap(),
            true,
        );

        assert_eq!(signature, expected);
    }

    #[cfg(feature = "serde")]
    #[test]
    fn serialize_both_parity() {
        // this test should be removed if the struct moves to an enum based on tx type
        let signature = PrimitiveSignature::new(
            U256::from_str("0xc569c92f176a3be1a6352dd5005bfc751dcb32f57623dd2a23693e64bf4447b0")
                .unwrap(),
            U256::from_str("0x1a891b566d369e79b7a66eecab1e008831e22daa15f91a0a0cf4f9f28f47ee05")
                .unwrap(),
            true,
        );

        let serialized = serde_json::to_string(&signature).unwrap();
        assert_eq!(
            serialized,
            r#"{"r":"0xc569c92f176a3be1a6352dd5005bfc751dcb32f57623dd2a23693e64bf4447b0","s":"0x1a891b566d369e79b7a66eecab1e008831e22daa15f91a0a0cf4f9f28f47ee05","yParity":"0x1","v":"0x1"}"#
        );
    }

    #[cfg(feature = "serde")]
    #[test]
    fn serialize_v_only() {
        // this test should be removed if the struct moves to an enum based on tx type
        let signature = PrimitiveSignature::new(
            U256::from_str("0xc569c92f176a3be1a6352dd5005bfc751dcb32f57623dd2a23693e64bf4447b0")
                .unwrap(),
            U256::from_str("0x1a891b566d369e79b7a66eecab1e008831e22daa15f91a0a0cf4f9f28f47ee05")
                .unwrap(),
            true,
        );

        let expected = r#"{"r":"0xc569c92f176a3be1a6352dd5005bfc751dcb32f57623dd2a23693e64bf4447b0","s":"0x1a891b566d369e79b7a66eecab1e008831e22daa15f91a0a0cf4f9f28f47ee05","yParity":"0x1","v":"0x1"}"#;

        let serialized = serde_json::to_string(&signature).unwrap();
        assert_eq!(serialized, expected);
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_bincode_roundtrip() {
        let signature = PrimitiveSignature::new(
            U256::from_str("0xc569c92f176a3be1a6352dd5005bfc751dcb32f57623dd2a23693e64bf4447b0")
                .unwrap(),
            U256::from_str("0x1a891b566d369e79b7a66eecab1e008831e22daa15f91a0a0cf4f9f28f47ee05")
                .unwrap(),
            true,
        );

        let bin = bincode::serialize(&signature).unwrap();
        assert_eq!(bincode::deserialize::<PrimitiveSignature>(&bin).unwrap(), signature);
    }

    #[cfg(feature = "rlp")]
    #[test]
    fn signature_rlp_encode() {
        // Given a Signature instance
        let sig = PrimitiveSignature::from_str("48b55bfa915ac795c431978d8a6a992b628d557da5ff759b307d495a36649353efffd310ac743f371de3b9f7f9cb56c0b28ad43601b4ab949f53faa07bd2c8041b").unwrap();

        // Initialize an empty buffer
        let mut buf = vec![];

        // Encode the Signature into the buffer
        sig.write_rlp_vrs(&mut buf, sig.v());

        // Define the expected hex-encoded string
        let expected = "80a048b55bfa915ac795c431978d8a6a992b628d557da5ff759b307d495a36649353a0efffd310ac743f371de3b9f7f9cb56c0b28ad43601b4ab949f53faa07bd2c804";

        // Assert that the encoded buffer matches the expected hex-encoded string
        assert_eq!(hex::encode(&buf), expected);
    }

    #[cfg(feature = "rlp")]
    #[test]
    fn signature_rlp_length() {
        // Given a Signature instance
        let sig = PrimitiveSignature::from_str("48b55bfa915ac795c431978d8a6a992b628d557da5ff759b307d495a36649353efffd310ac743f371de3b9f7f9cb56c0b28ad43601b4ab949f53faa07bd2c8041b").unwrap();

        // Assert that the length of the Signature matches the expected length
        assert_eq!(sig.rlp_rs_len() + sig.v().length(), 67);
    }

    #[cfg(feature = "rlp")]
    #[test]
    fn test_rlp_vrs_len() {
        let signature = PrimitiveSignature::test_signature();
        assert_eq!(67, signature.rlp_rs_len() + 1);
    }

    #[cfg(feature = "rlp")]
    #[test]
    fn test_encode_and_decode() {
        let signature = PrimitiveSignature::test_signature();

        let mut encoded = Vec::new();
        signature.write_rlp_vrs(&mut encoded, signature.v());
        assert_eq!(encoded.len(), signature.rlp_rs_len() + signature.v().length());
        let decoded = PrimitiveSignature::decode_rlp_vrs(&mut &*encoded, bool::decode).unwrap();
        assert_eq!(signature, decoded);
    }

    #[test]
    fn test_as_bytes() {
        let signature = PrimitiveSignature::new(
            U256::from_str(
                "18515461264373351373200002665853028612451056578545711640558177340181847433846",
            )
            .unwrap(),
            U256::from_str(
                "46948507304638947509940763649030358759909902576025900602547168820602576006531",
            )
            .unwrap(),
            false,
        );

        let expected = Bytes::from_hex("0x28ef61340bd939bc2195fe537567866003e1a15d3c71ff63e1590620aa63627667cbe9d8997f761aecb703304b3800ccf555c9f3dc64214b297fb1966a3b6d831b").unwrap();
        assert_eq!(signature.as_bytes(), **expected);
    }
}