alloy_primitives/signed/ops.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
use super::{
utils::{handle_overflow, twos_complement},
Sign, Signed,
};
use core::{cmp, iter, ops};
use ruint::Uint;
// ops impl
impl<const BITS: usize, const LIMBS: usize> Signed<BITS, LIMBS> {
/// Computes the absolute value of `self`.
///
/// # Overflow behavior
///
/// The absolute value of `Self::MIN` cannot be represented as `Self` and
/// attempting to calculate it will cause an overflow. This means that code
/// in debug mode will trigger a panic on this case and optimized code will
/// return `Self::MIN` without a panic.
#[inline]
#[track_caller]
#[must_use]
pub fn abs(self) -> Self {
handle_overflow(self.overflowing_abs())
}
/// Computes the absolute value of `self`.
///
/// Returns a tuple of the absolute version of self along with a boolean
/// indicating whether an overflow happened. If self is the minimum
/// value then the minimum value will be returned again and true will be
/// returned for an overflow happening.
#[inline]
#[must_use]
pub fn overflowing_abs(self) -> (Self, bool) {
if BITS == 0 {
return (self, false);
}
if self == Self::MIN {
(self, true)
} else {
(Self(self.unsigned_abs()), false)
}
}
/// Checked absolute value. Computes `self.abs()`, returning `None` if `self
/// == MIN`.
#[inline]
#[must_use]
pub fn checked_abs(self) -> Option<Self> {
match self.overflowing_abs() {
(value, false) => Some(value),
_ => None,
}
}
/// Saturating absolute value. Computes `self.abs()`, returning `MAX` if
/// `self == MIN` instead of overflowing.
#[inline]
#[must_use]
pub fn saturating_abs(self) -> Self {
match self.overflowing_abs() {
(value, false) => value,
_ => Self::MAX,
}
}
/// Wrapping absolute value. Computes `self.abs()`, wrapping around at the
/// boundary of the type.
#[inline]
#[must_use]
pub fn wrapping_abs(self) -> Self {
self.overflowing_abs().0
}
/// Computes the absolute value of `self` without any wrapping or panicking.
#[inline]
#[must_use]
pub fn unsigned_abs(self) -> Uint<BITS, LIMBS> {
self.into_sign_and_abs().1
}
/// Negates self, overflowing if this is equal to the minimum value.
///
/// Returns a tuple of the negated version of self along with a boolean
/// indicating whether an overflow happened. If `self` is the minimum
/// value, then the minimum value will be returned again and `true` will
/// be returned for an overflow happening.
#[inline]
#[must_use]
pub fn overflowing_neg(self) -> (Self, bool) {
if BITS == 0 {
return (self, false);
}
if self == Self::MIN {
(self, true)
} else {
(Self(twos_complement(self.0)), false)
}
}
/// Checked negation. Computes `-self`, returning `None` if `self == MIN`.
#[inline]
#[must_use]
pub fn checked_neg(self) -> Option<Self> {
match self.overflowing_neg() {
(value, false) => Some(value),
_ => None,
}
}
/// Saturating negation. Computes `-self`, returning `MAX` if `self == MIN`
/// instead of overflowing.
#[inline]
#[must_use]
pub fn saturating_neg(self) -> Self {
match self.overflowing_neg() {
(value, false) => value,
_ => Self::MAX,
}
}
/// Wrapping (modular) negation. Computes `-self`, wrapping around at the
/// boundary of the type.
///
/// The only case where such wrapping can occur is when one negates `MIN` on
/// a signed type (where `MIN` is the negative minimal value for the
/// type); this is a positive value that is too large to represent in
/// the type. In such a case, this function returns `MIN` itself.
#[inline]
#[must_use]
pub fn wrapping_neg(self) -> Self {
self.overflowing_neg().0
}
/// Calculates `self` + `rhs`
///
/// Returns a tuple of the addition along with a boolean indicating whether
/// an arithmetic overflow would occur. If an overflow would have
/// occurred then the wrapped value is returned.
#[inline]
#[must_use]
pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
let (unsigned, _) = self.0.overflowing_add(rhs.0);
let result = Self(unsigned);
// NOTE: Overflow is determined by checking the sign of the operands and
// the result.
let overflow = matches!(
(self.sign(), rhs.sign(), result.sign()),
(Sign::Positive, Sign::Positive, Sign::Negative)
| (Sign::Negative, Sign::Negative, Sign::Positive)
);
(result, overflow)
}
/// Checked integer addition. Computes `self + rhs`, returning `None` if
/// overflow occurred.
#[inline]
#[must_use]
pub const fn checked_add(self, rhs: Self) -> Option<Self> {
match self.overflowing_add(rhs) {
(value, false) => Some(value),
_ => None,
}
}
/// Saturating integer addition. Computes `self + rhs`, saturating at the
/// numeric bounds instead of overflowing.
#[inline]
#[must_use]
pub const fn saturating_add(self, rhs: Self) -> Self {
let (result, overflow) = self.overflowing_add(rhs);
if overflow {
match result.sign() {
Sign::Positive => Self::MIN,
Sign::Negative => Self::MAX,
}
} else {
result
}
}
/// Wrapping (modular) addition. Computes `self + rhs`, wrapping around at
/// the boundary of the type.
#[inline]
#[must_use]
pub const fn wrapping_add(self, rhs: Self) -> Self {
self.overflowing_add(rhs).0
}
/// Calculates `self` - `rhs`
///
/// Returns a tuple of the subtraction along with a boolean indicating
/// whether an arithmetic overflow would occur. If an overflow would
/// have occurred then the wrapped value is returned.
#[inline]
#[must_use]
pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
// NOTE: We can't just compute the `self + (-rhs)` because `-rhs` does
// not always exist, specifically this would be a problem in case
// `rhs == Self::MIN`
let (unsigned, _) = self.0.overflowing_sub(rhs.0);
let result = Self(unsigned);
// NOTE: Overflow is determined by checking the sign of the operands and
// the result.
let overflow = matches!(
(self.sign(), rhs.sign(), result.sign()),
(Sign::Positive, Sign::Negative, Sign::Negative)
| (Sign::Negative, Sign::Positive, Sign::Positive)
);
(result, overflow)
}
/// Checked integer subtraction. Computes `self - rhs`, returning `None` if
/// overflow occurred.
#[inline]
#[must_use]
pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
match self.overflowing_sub(rhs) {
(value, false) => Some(value),
_ => None,
}
}
/// Saturating integer subtraction. Computes `self - rhs`, saturating at the
/// numeric bounds instead of overflowing.
#[inline]
#[must_use]
pub const fn saturating_sub(self, rhs: Self) -> Self {
let (result, overflow) = self.overflowing_sub(rhs);
if overflow {
match result.sign() {
Sign::Positive => Self::MIN,
Sign::Negative => Self::MAX,
}
} else {
result
}
}
/// Wrapping (modular) subtraction. Computes `self - rhs`, wrapping around
/// at the boundary of the type.
#[inline]
#[must_use]
pub const fn wrapping_sub(self, rhs: Self) -> Self {
self.overflowing_sub(rhs).0
}
/// Calculates `self` * `rhs`
///
/// Returns a tuple of the multiplication along with a boolean indicating
/// whether an arithmetic overflow would occur. If an overflow would
/// have occurred then the wrapped value is returned.
#[inline]
#[must_use]
pub fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
if self.is_zero() || rhs.is_zero() {
return (Self::ZERO, false);
}
let sign = self.sign() * rhs.sign();
let (unsigned, overflow_mul) = self.unsigned_abs().overflowing_mul(rhs.unsigned_abs());
let (result, overflow_conv) = Self::overflowing_from_sign_and_abs(sign, unsigned);
(result, overflow_mul || overflow_conv)
}
/// Checked integer multiplication. Computes `self * rhs`, returning None if
/// overflow occurred.
#[inline]
#[must_use]
pub fn checked_mul(self, rhs: Self) -> Option<Self> {
match self.overflowing_mul(rhs) {
(value, false) => Some(value),
_ => None,
}
}
/// Saturating integer multiplication. Computes `self * rhs`, saturating at
/// the numeric bounds instead of overflowing.
#[inline]
#[must_use]
pub fn saturating_mul(self, rhs: Self) -> Self {
let (result, overflow) = self.overflowing_mul(rhs);
if overflow {
match self.sign() * rhs.sign() {
Sign::Positive => Self::MAX,
Sign::Negative => Self::MIN,
}
} else {
result
}
}
/// Wrapping (modular) multiplication. Computes `self * rhs`, wrapping
/// around at the boundary of the type.
#[inline]
#[must_use]
pub fn wrapping_mul(self, rhs: Self) -> Self {
self.overflowing_mul(rhs).0
}
/// Calculates `self` / `rhs`
///
/// Returns a tuple of the divisor along with a boolean indicating whether
/// an arithmetic overflow would occur. If an overflow would occur then
/// self is returned.
///
/// # Panics
///
/// If `rhs` is 0.
#[inline]
#[track_caller]
#[must_use]
pub fn overflowing_div(self, rhs: Self) -> (Self, bool) {
assert!(!rhs.is_zero(), "attempt to divide by zero");
let sign = self.sign() * rhs.sign();
// Note, signed division can't overflow!
let unsigned = self.unsigned_abs() / rhs.unsigned_abs();
let (result, overflow_conv) = Self::overflowing_from_sign_and_abs(sign, unsigned);
(result, overflow_conv && !result.is_zero())
}
/// Checked integer division. Computes `self / rhs`, returning `None` if
/// `rhs == 0` or the division results in overflow.
#[inline]
#[must_use]
pub fn checked_div(self, rhs: Self) -> Option<Self> {
if rhs.is_zero() || (self == Self::MIN && rhs == Self::MINUS_ONE) {
None
} else {
Some(self.overflowing_div(rhs).0)
}
}
/// Saturating integer division. Computes `self / rhs`, saturating at the
/// numeric bounds instead of overflowing.
///
/// # Panics
///
/// If `rhs` is 0.
#[inline]
#[track_caller]
#[must_use]
pub fn saturating_div(self, rhs: Self) -> Self {
match self.overflowing_div(rhs) {
(value, false) => value,
// MIN / -1 is the only possible saturating overflow
_ => Self::MAX,
}
}
/// Wrapping (modular) division. Computes `self / rhs`, wrapping around at
/// the boundary of the type.
///
/// The only case where such wrapping can occur is when one divides `MIN /
/// -1` on a signed type (where `MIN` is the negative minimal value for
/// the type); this is equivalent to `-MIN`, a positive value that is
/// too large to represent in the type. In such a case, this function
/// returns `MIN` itself.
///
/// # Panics
///
/// If `rhs` is 0.
#[inline]
#[track_caller]
#[must_use]
pub fn wrapping_div(self, rhs: Self) -> Self {
self.overflowing_div(rhs).0
}
/// Calculates `self` % `rhs`
///
/// Returns a tuple of the remainder after dividing along with a boolean
/// indicating whether an arithmetic overflow would occur. If an
/// overflow would occur then 0 is returned.
///
/// # Panics
///
/// If `rhs` is 0.
#[inline]
#[track_caller]
#[must_use]
pub fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
if self == Self::MIN && rhs == Self::MINUS_ONE {
(Self::ZERO, true)
} else {
let div_res = self / rhs;
(self - div_res * rhs, false)
}
}
/// Checked integer remainder. Computes `self % rhs`, returning `None` if
/// `rhs == 0` or the division results in overflow.
#[inline]
#[must_use]
pub fn checked_rem(self, rhs: Self) -> Option<Self> {
if rhs.is_zero() || (self == Self::MIN && rhs == Self::MINUS_ONE) {
None
} else {
Some(self.overflowing_rem(rhs).0)
}
}
/// Wrapping (modular) remainder. Computes `self % rhs`, wrapping around at
/// the boundary of the type.
///
/// Such wrap-around never actually occurs mathematically; implementation
/// artifacts make `x % y` invalid for `MIN / -1` on a signed type
/// (where `MIN` is the negative minimal value). In such a case, this
/// function returns `0`.
///
/// # Panics
///
/// If `rhs` is 0.
#[inline]
#[track_caller]
#[must_use]
pub fn wrapping_rem(self, rhs: Self) -> Self {
self.overflowing_rem(rhs).0
}
/// Calculates the quotient of Euclidean division of `self` by `rhs`.
///
/// This computes the integer `q` such that `self = q * rhs + r`, with
/// `r = self.rem_euclid(rhs)` and `0 <= r < abs(rhs)`.
///
/// In other words, the result is `self / rhs` rounded to the integer `q`
/// such that `self >= q * rhs`.
/// If `self > 0`, this is equal to round towards zero (the default in
/// Rust); if `self < 0`, this is equal to round towards +/- infinity.
///
/// # Panics
///
/// If `rhs` is 0 or the division results in overflow.
#[inline]
#[track_caller]
#[must_use]
pub fn div_euclid(self, rhs: Self) -> Self {
let q = self / rhs;
if (self % rhs).is_negative() {
if rhs.is_positive() {
q - Self::ONE
} else {
q + Self::ONE
}
} else {
q
}
}
/// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
///
/// Returns a tuple of the divisor along with a boolean indicating whether
/// an arithmetic overflow would occur. If an overflow would occur then
/// `self` is returned.
///
/// # Panics
///
/// If `rhs` is 0.
#[inline]
#[track_caller]
#[must_use]
pub fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
if self == Self::MIN && rhs == Self::MINUS_ONE {
(self, true)
} else {
(self.div_euclid(rhs), false)
}
}
/// Checked Euclidean division. Computes `self.div_euclid(rhs)`, returning
/// `None` if `rhs == 0` or the division results in overflow.
#[inline]
#[must_use]
pub fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
if rhs.is_zero() || (self == Self::MIN && rhs == Self::MINUS_ONE) {
None
} else {
Some(self.div_euclid(rhs))
}
}
/// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`,
/// wrapping around at the boundary of the type.
///
/// Wrapping will only occur in `MIN / -1` on a signed type (where `MIN` is
/// the negative minimal value for the type). This is equivalent to
/// `-MIN`, a positive value that is too large to represent in the type.
/// In this case, this method returns `MIN` itself.
///
/// # Panics
///
/// If `rhs` is 0.
#[inline]
#[track_caller]
#[must_use]
pub fn wrapping_div_euclid(self, rhs: Self) -> Self {
self.overflowing_div_euclid(rhs).0
}
/// Calculates the least nonnegative remainder of `self (mod rhs)`.
///
/// This is done as if by the Euclidean division algorithm -- given `r =
/// self.rem_euclid(rhs)`, `self = rhs * self.div_euclid(rhs) + r`, and
/// `0 <= r < abs(rhs)`.
///
/// # Panics
///
/// If `rhs` is 0 or the division results in overflow.
#[inline]
#[track_caller]
#[must_use]
pub fn rem_euclid(self, rhs: Self) -> Self {
let r = self % rhs;
if r < Self::ZERO {
if rhs < Self::ZERO {
r - rhs
} else {
r + rhs
}
} else {
r
}
}
/// Overflowing Euclidean remainder. Calculates `self.rem_euclid(rhs)`.
///
/// Returns a tuple of the remainder after dividing along with a boolean
/// indicating whether an arithmetic overflow would occur. If an
/// overflow would occur then 0 is returned.
///
/// # Panics
///
/// If `rhs` is 0.
#[inline]
#[track_caller]
#[must_use]
pub fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
if self == Self::MIN && rhs == Self::MINUS_ONE {
(Self::ZERO, true)
} else {
(self.rem_euclid(rhs), false)
}
}
/// Wrapping Euclidean remainder. Computes `self.rem_euclid(rhs)`, wrapping
/// around at the boundary of the type.
///
/// Wrapping will only occur in `MIN % -1` on a signed type (where `MIN` is
/// the negative minimal value for the type). In this case, this method
/// returns 0.
///
/// # Panics
///
/// If `rhs` is 0.
#[inline]
#[track_caller]
#[must_use]
pub fn wrapping_rem_euclid(self, rhs: Self) -> Self {
self.overflowing_rem_euclid(rhs).0
}
/// Checked Euclidean remainder. Computes `self.rem_euclid(rhs)`, returning
/// `None` if `rhs == 0` or the division results in overflow.
#[inline]
#[must_use]
pub fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
if rhs.is_zero() || (self == Self::MIN && rhs == Self::MINUS_ONE) {
None
} else {
Some(self.rem_euclid(rhs))
}
}
/// Returns the sign of `self` to the exponent `exp`.
///
/// Note that this method does not actually try to compute the `self` to the
/// exponent `exp`, but instead uses the property that a negative number to
/// an odd exponent will be negative. This means that the sign of the result
/// of exponentiation can be computed even if the actual result is too large
/// to fit in 256-bit signed integer.
#[inline]
pub(crate) const fn pow_sign(self, exp: Uint<BITS, LIMBS>) -> Sign {
let is_exp_odd = BITS != 0 && exp.as_limbs()[0] % 2 == 1;
if is_exp_odd && self.is_negative() {
Sign::Negative
} else {
Sign::Positive
}
}
/// Create `10**n` as this type.
///
/// # Panics
///
/// If the result overflows the type.
#[inline]
#[track_caller]
#[must_use]
pub fn exp10(n: usize) -> Self {
Uint::<BITS, LIMBS>::from(10).pow(Uint::from(n)).try_into().expect("overflow")
}
/// Raises self to the power of `exp`, using exponentiation by squaring.
///
/// # Panics
///
/// If the result overflows the type in debug mode.
#[inline]
#[track_caller]
#[must_use]
pub fn pow(self, exp: Uint<BITS, LIMBS>) -> Self {
handle_overflow(self.overflowing_pow(exp))
}
/// Raises self to the power of `exp`, using exponentiation by squaring.
///
/// Returns a tuple of the exponentiation along with a bool indicating
/// whether an overflow happened.
#[inline]
#[must_use]
pub fn overflowing_pow(self, exp: Uint<BITS, LIMBS>) -> (Self, bool) {
if BITS == 0 {
return (Self::ZERO, false);
}
let sign = self.pow_sign(exp);
let (unsigned, overflow_pow) = self.unsigned_abs().overflowing_pow(exp);
let (result, overflow_conv) = Self::overflowing_from_sign_and_abs(sign, unsigned);
(result, overflow_pow || overflow_conv)
}
/// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
/// overflow occurred.
#[inline]
#[must_use]
pub fn checked_pow(self, exp: Uint<BITS, LIMBS>) -> Option<Self> {
let (result, overflow) = self.overflowing_pow(exp);
if overflow {
None
} else {
Some(result)
}
}
/// Saturating integer exponentiation. Computes `self.pow(exp)`, saturating
/// at the numeric bounds instead of overflowing.
#[inline]
#[must_use]
pub fn saturating_pow(self, exp: Uint<BITS, LIMBS>) -> Self {
let (result, overflow) = self.overflowing_pow(exp);
if overflow {
match self.pow_sign(exp) {
Sign::Positive => Self::MAX,
Sign::Negative => Self::MIN,
}
} else {
result
}
}
/// Raises self to the power of `exp`, wrapping around at the
/// boundary of the type.
#[inline]
#[must_use]
pub fn wrapping_pow(self, exp: Uint<BITS, LIMBS>) -> Self {
self.overflowing_pow(exp).0
}
/// Shifts self left by `rhs` bits.
///
/// Returns a tuple of the shifted version of self along with a boolean
/// indicating whether the shift value was larger than or equal to the
/// number of bits.
#[inline]
#[must_use]
pub fn overflowing_shl(self, rhs: usize) -> (Self, bool) {
if rhs >= 256 {
(Self::ZERO, true)
} else {
(Self(self.0 << rhs), false)
}
}
/// Checked shift left. Computes `self << rhs`, returning `None` if `rhs` is
/// larger than or equal to the number of bits in `self`.
#[inline]
#[must_use]
pub fn checked_shl(self, rhs: usize) -> Option<Self> {
match self.overflowing_shl(rhs) {
(value, false) => Some(value),
_ => None,
}
}
/// Wrapping shift left. Computes `self << rhs`, returning 0 if larger than
/// or equal to the number of bits in `self`.
#[inline]
#[must_use]
pub fn wrapping_shl(self, rhs: usize) -> Self {
self.overflowing_shl(rhs).0
}
/// Shifts self right by `rhs` bits.
///
/// Returns a tuple of the shifted version of self along with a boolean
/// indicating whether the shift value was larger than or equal to the
/// number of bits.
#[inline]
#[must_use]
pub fn overflowing_shr(self, rhs: usize) -> (Self, bool) {
if rhs >= 256 {
(Self::ZERO, true)
} else {
(Self(self.0 >> rhs), false)
}
}
/// Checked shift right. Computes `self >> rhs`, returning `None` if `rhs`
/// is larger than or equal to the number of bits in `self`.
#[inline]
#[must_use]
pub fn checked_shr(self, rhs: usize) -> Option<Self> {
match self.overflowing_shr(rhs) {
(value, false) => Some(value),
_ => None,
}
}
/// Wrapping shift right. Computes `self >> rhs`, returning 0 if larger than
/// or equal to the number of bits in `self`.
#[inline]
#[must_use]
pub fn wrapping_shr(self, rhs: usize) -> Self {
self.overflowing_shr(rhs).0
}
/// Arithmetic shift right operation. Computes `self >> rhs` maintaining the
/// original sign. If the number is positive this is the same as logic
/// shift right.
#[inline]
#[must_use]
pub fn asr(self, rhs: usize) -> Self {
// Avoid shifting if we are going to know the result regardless of the value.
if rhs == 0 || BITS == 0 {
return self;
}
if rhs >= BITS - 1 {
match self.sign() {
Sign::Positive => return Self::ZERO,
Sign::Negative => return Self::MINUS_ONE,
}
}
match self.sign() {
// Perform the shift.
Sign::Positive => self.wrapping_shr(rhs),
Sign::Negative => {
// We need to do: `for 0..shift { self >> 1 | 2^255 }`
// We can avoid the loop by doing: `self >> shift | ~(2^(255 - shift) - 1)`
// where '~' represents ones complement
let two: Uint<BITS, LIMBS> = Uint::from(2);
let bitwise_or = Self::from_raw(
!(two.pow(Uint::<BITS, LIMBS>::from(BITS - rhs))
- Uint::<BITS, LIMBS>::from(1)),
);
(self.wrapping_shr(rhs)) | bitwise_or
}
}
}
/// Arithmetic shift left operation. Computes `self << rhs`, checking for
/// overflow on the final result.
///
/// Returns `None` if the operation overflowed (most significant bit
/// changes).
#[inline]
#[must_use]
pub fn asl(self, rhs: usize) -> Option<Self> {
if rhs == 0 || BITS == 0 {
Some(self)
} else {
let result = self.wrapping_shl(rhs);
if result.sign() != self.sign() {
// Overflow occurred
None
} else {
Some(result)
}
}
}
/// Compute the [two's complement](https://en.wikipedia.org/wiki/Two%27s_complement) of this number.
#[inline]
#[must_use]
pub fn twos_complement(self) -> Uint<BITS, LIMBS> {
let abs = self.into_raw();
match self.sign() {
Sign::Positive => abs,
Sign::Negative => twos_complement(abs),
}
}
}
// Implement Shl and Shr only for types <= usize, since U256 uses .as_usize()
// which panics
macro_rules! impl_shift {
($($t:ty),+) => {
// We are OK with wrapping behaviour here because it's how Rust behaves with the primitive
// integer types.
// $t <= usize: cast to usize
$(
impl<const BITS: usize, const LIMBS: usize> ops::Shl<$t> for Signed<BITS, LIMBS> {
type Output = Self;
#[inline]
fn shl(self, rhs: $t) -> Self::Output {
self.wrapping_shl(rhs as usize)
}
}
impl<const BITS: usize, const LIMBS: usize> ops::ShlAssign<$t> for Signed<BITS, LIMBS> {
#[inline]
fn shl_assign(&mut self, rhs: $t) {
*self = *self << rhs;
}
}
impl<const BITS: usize, const LIMBS: usize> ops::Shr<$t> for Signed<BITS, LIMBS> {
type Output = Self;
#[inline]
fn shr(self, rhs: $t) -> Self::Output {
self.wrapping_shr(rhs as usize)
}
}
impl<const BITS: usize, const LIMBS: usize> ops::ShrAssign<$t> for Signed<BITS, LIMBS> {
#[inline]
fn shr_assign(&mut self, rhs: $t) {
*self = *self >> rhs;
}
}
)+
};
}
#[cfg(target_pointer_width = "16")]
impl_shift!(i8, u8, i16, u16, isize, usize);
#[cfg(target_pointer_width = "32")]
impl_shift!(i8, u8, i16, u16, i32, u32, isize, usize);
#[cfg(target_pointer_width = "64")]
impl_shift!(i8, u8, i16, u16, i32, u32, i64, u64, isize, usize);
// cmp
impl<const BITS: usize, const LIMBS: usize> cmp::PartialOrd for Signed<BITS, LIMBS> {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<const BITS: usize, const LIMBS: usize> cmp::Ord for Signed<BITS, LIMBS> {
#[inline]
fn cmp(&self, other: &Self) -> cmp::Ordering {
// TODO(nlordell): Once subtraction is implemented:
// self.saturating_sub(*other).signum64().partial_cmp(&0)
use cmp::Ordering::*;
use Sign::*;
match (self.into_sign_and_abs(), other.into_sign_and_abs()) {
((Positive, _), (Negative, _)) => Greater,
((Negative, _), (Positive, _)) => Less,
((Positive, this), (Positive, other)) => this.cmp(&other),
((Negative, this), (Negative, other)) => other.cmp(&this),
}
}
}
// arithmetic ops - implemented above
impl<T, const BITS: usize, const LIMBS: usize> ops::Add<T> for Signed<BITS, LIMBS>
where
T: Into<Self>,
{
type Output = Self;
#[inline]
#[track_caller]
fn add(self, rhs: T) -> Self::Output {
handle_overflow(self.overflowing_add(rhs.into()))
}
}
impl<T, const BITS: usize, const LIMBS: usize> ops::AddAssign<T> for Signed<BITS, LIMBS>
where
T: Into<Self>,
{
#[inline]
#[track_caller]
fn add_assign(&mut self, rhs: T) {
*self = *self + rhs;
}
}
impl<T, const BITS: usize, const LIMBS: usize> ops::Sub<T> for Signed<BITS, LIMBS>
where
T: Into<Self>,
{
type Output = Self;
#[inline]
#[track_caller]
fn sub(self, rhs: T) -> Self::Output {
handle_overflow(self.overflowing_sub(rhs.into()))
}
}
impl<T, const BITS: usize, const LIMBS: usize> ops::SubAssign<T> for Signed<BITS, LIMBS>
where
T: Into<Self>,
{
#[inline]
#[track_caller]
fn sub_assign(&mut self, rhs: T) {
*self = *self - rhs;
}
}
impl<T, const BITS: usize, const LIMBS: usize> ops::Mul<T> for Signed<BITS, LIMBS>
where
T: Into<Self>,
{
type Output = Self;
#[inline]
#[track_caller]
fn mul(self, rhs: T) -> Self::Output {
handle_overflow(self.overflowing_mul(rhs.into()))
}
}
impl<T, const BITS: usize, const LIMBS: usize> ops::MulAssign<T> for Signed<BITS, LIMBS>
where
T: Into<Self>,
{
#[inline]
#[track_caller]
fn mul_assign(&mut self, rhs: T) {
*self = *self * rhs;
}
}
impl<T, const BITS: usize, const LIMBS: usize> ops::Div<T> for Signed<BITS, LIMBS>
where
T: Into<Self>,
{
type Output = Self;
#[inline]
#[track_caller]
fn div(self, rhs: T) -> Self::Output {
handle_overflow(self.overflowing_div(rhs.into()))
}
}
impl<T, const BITS: usize, const LIMBS: usize> ops::DivAssign<T> for Signed<BITS, LIMBS>
where
T: Into<Self>,
{
#[inline]
#[track_caller]
fn div_assign(&mut self, rhs: T) {
*self = *self / rhs;
}
}
impl<T, const BITS: usize, const LIMBS: usize> ops::Rem<T> for Signed<BITS, LIMBS>
where
T: Into<Self>,
{
type Output = Self;
#[inline]
#[track_caller]
fn rem(self, rhs: T) -> Self::Output {
handle_overflow(self.overflowing_rem(rhs.into()))
}
}
impl<T, const BITS: usize, const LIMBS: usize> ops::RemAssign<T> for Signed<BITS, LIMBS>
where
T: Into<Self>,
{
#[inline]
#[track_caller]
fn rem_assign(&mut self, rhs: T) {
*self = *self % rhs;
}
}
impl<T, const BITS: usize, const LIMBS: usize> iter::Sum<T> for Signed<BITS, LIMBS>
where
T: Into<Self>,
{
#[inline]
#[track_caller]
fn sum<I: Iterator<Item = T>>(iter: I) -> Self {
iter.fold(Self::ZERO, |acc, x| acc + x)
}
}
impl<T, const BITS: usize, const LIMBS: usize> iter::Product<T> for Signed<BITS, LIMBS>
where
T: Into<Self>,
{
#[inline]
#[track_caller]
fn product<I: Iterator<Item = T>>(iter: I) -> Self {
iter.fold(Self::ONE, |acc, x| acc * x)
}
}
// bitwise ops - delegated to U256
impl<const BITS: usize, const LIMBS: usize> ops::BitAnd for Signed<BITS, LIMBS> {
type Output = Self;
#[inline]
fn bitand(self, rhs: Self) -> Self::Output {
Self(self.0 & rhs.0)
}
}
impl<const BITS: usize, const LIMBS: usize> ops::BitAndAssign for Signed<BITS, LIMBS> {
#[inline]
fn bitand_assign(&mut self, rhs: Self) {
*self = *self & rhs;
}
}
impl<const BITS: usize, const LIMBS: usize> ops::BitOr for Signed<BITS, LIMBS> {
type Output = Self;
#[inline]
fn bitor(self, rhs: Self) -> Self::Output {
Self(self.0 | rhs.0)
}
}
impl<const BITS: usize, const LIMBS: usize> ops::BitOrAssign for Signed<BITS, LIMBS> {
#[inline]
fn bitor_assign(&mut self, rhs: Self) {
*self = *self | rhs;
}
}
impl<const BITS: usize, const LIMBS: usize> ops::BitXor for Signed<BITS, LIMBS> {
type Output = Self;
#[inline]
fn bitxor(self, rhs: Self) -> Self::Output {
Self(self.0 ^ rhs.0)
}
}
impl<const BITS: usize, const LIMBS: usize> ops::BitXorAssign for Signed<BITS, LIMBS> {
#[inline]
fn bitxor_assign(&mut self, rhs: Self) {
*self = *self ^ rhs;
}
}
// unary ops
impl<const BITS: usize, const LIMBS: usize> ops::Neg for Signed<BITS, LIMBS> {
type Output = Self;
#[inline]
#[track_caller]
fn neg(self) -> Self::Output {
handle_overflow(self.overflowing_neg())
}
}
impl<const BITS: usize, const LIMBS: usize> ops::Not for Signed<BITS, LIMBS> {
type Output = Self;
#[inline]
fn not(self) -> Self::Output {
Self(!self.0)
}
}