alloy_provider/fillers/
nonce.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
use crate::{
    fillers::{FillerControlFlow, TxFiller},
    provider::SendableTx,
    Provider,
};
use alloy_network::{Network, TransactionBuilder};
use alloy_primitives::Address;
use alloy_transport::{Transport, TransportResult};
use async_trait::async_trait;
use dashmap::DashMap;
use futures::lock::Mutex;
use std::sync::Arc;

/// A trait that determines the behavior of filling nonces.
#[cfg_attr(target_arch = "wasm32", async_trait(?Send))]
#[cfg_attr(not(target_arch = "wasm32"), async_trait)]
pub trait NonceManager: Clone + Send + Sync + std::fmt::Debug {
    /// Get the next nonce for the given account.
    async fn get_next_nonce<P, T, N>(&self, provider: &P, address: Address) -> TransportResult<u64>
    where
        P: Provider<T, N>,
        N: Network,
        T: Transport + Clone;
}

/// This [`NonceManager`] implementation will fetch the transaction count for any new account it
/// sees.
///
/// Unlike [`CachedNonceManager`], this implementation does not store the transaction count locally,
/// which results in more frequent calls to the provider, but it is more resilient to chain
/// reorganizations.
#[derive(Clone, Debug, Default)]
#[non_exhaustive]
pub struct SimpleNonceManager;

#[cfg_attr(target_arch = "wasm32", async_trait(?Send))]
#[cfg_attr(not(target_arch = "wasm32"), async_trait)]
impl NonceManager for SimpleNonceManager {
    async fn get_next_nonce<P, T, N>(&self, provider: &P, address: Address) -> TransportResult<u64>
    where
        P: Provider<T, N>,
        N: Network,
        T: Transport + Clone,
    {
        provider.get_transaction_count(address).pending().await
    }
}

/// Cached nonce manager
///
/// This [`NonceManager`] implementation will fetch the transaction count for any new account it
/// sees, store it locally and increment the locally stored nonce as transactions are sent via
/// [`Provider::send_transaction`].
///
/// There is also an alternative implementation [`SimpleNonceManager`] that does not store the
/// transaction count locally.
#[derive(Clone, Debug, Default)]
pub struct CachedNonceManager {
    nonces: Arc<DashMap<Address, Arc<Mutex<u64>>>>,
}

#[cfg_attr(target_arch = "wasm32", async_trait(?Send))]
#[cfg_attr(not(target_arch = "wasm32"), async_trait)]
impl NonceManager for CachedNonceManager {
    async fn get_next_nonce<P, T, N>(&self, provider: &P, address: Address) -> TransportResult<u64>
    where
        P: Provider<T, N>,
        N: Network,
        T: Transport + Clone,
    {
        // Use `u64::MAX` as a sentinel value to indicate that the nonce has not been fetched yet.
        const NONE: u64 = u64::MAX;

        // Locks dashmap internally for a short duration to clone the `Arc`.
        // We also don't want to hold the dashmap lock through the await point below.
        let nonce = {
            let rm = self.nonces.entry(address).or_insert_with(|| Arc::new(Mutex::new(NONE)));
            Arc::clone(rm.value())
        };

        let mut nonce = nonce.lock().await;
        let new_nonce = if *nonce == NONE {
            // Initialize the nonce if we haven't seen this account before.
            provider.get_transaction_count(address).await?
        } else {
            *nonce + 1
        };
        *nonce = new_nonce;
        Ok(new_nonce)
    }
}

/// A [`TxFiller`] that fills nonces on transactions. The behavior of filling nonces is determined
/// by the [`NonceManager`].
///
/// # Note
///
/// - If the transaction request does not have a sender set, this layer will not fill nonces.
/// - Using two providers with their own nonce layer can potentially fill invalid nonces if
///   transactions are sent from the same address, as the next nonce to be used is cached internally
///   in the layer.
///
/// # Example
///
/// ```
/// # use alloy_network::{NetworkWallet, EthereumWallet, Ethereum};
/// # use alloy_rpc_types_eth::TransactionRequest;
/// # use alloy_provider::{ProviderBuilder, RootProvider, Provider};
/// # async fn test<W: NetworkWallet<Ethereum> + Clone>(url: url::Url, wallet: W) -> Result<(), Box<dyn std::error::Error>> {
/// let provider = ProviderBuilder::new()
///     .with_simple_nonce_management()
///     .wallet(wallet)
///     .on_http(url);
///
/// provider.send_transaction(TransactionRequest::default()).await;
/// # Ok(())
/// # }
/// ```
#[derive(Clone, Debug, Default)]
pub struct NonceFiller<M: NonceManager = SimpleNonceManager> {
    nonce_manager: M,
}

impl<M: NonceManager> NonceFiller<M> {
    /// Creates a new [`NonceFiller`] with the specified [`NonceManager`].
    pub const fn new(nonce_manager: M) -> Self {
        Self { nonce_manager }
    }
}

impl<M: NonceManager, N: Network> TxFiller<N> for NonceFiller<M> {
    type Fillable = u64;

    fn status(&self, tx: &<N as Network>::TransactionRequest) -> FillerControlFlow {
        if tx.nonce().is_some() {
            return FillerControlFlow::Finished;
        }
        if tx.from().is_none() {
            return FillerControlFlow::missing("NonceManager", vec!["from"]);
        }
        FillerControlFlow::Ready
    }

    fn fill_sync(&self, _tx: &mut SendableTx<N>) {}

    async fn prepare<P, T>(
        &self,
        provider: &P,
        tx: &N::TransactionRequest,
    ) -> TransportResult<Self::Fillable>
    where
        P: Provider<T, N>,
        T: Transport + Clone,
    {
        let from = tx.from().expect("checked by 'ready()'");
        self.nonce_manager.get_next_nonce(provider, from).await
    }

    async fn fill(
        &self,
        nonce: Self::Fillable,
        mut tx: SendableTx<N>,
    ) -> TransportResult<SendableTx<N>> {
        if let Some(builder) = tx.as_mut_builder() {
            builder.set_nonce(nonce);
        }
        Ok(tx)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{ProviderBuilder, WalletProvider};
    use alloy_consensus::Transaction;
    use alloy_primitives::{address, U256};
    use alloy_rpc_types_eth::TransactionRequest;

    async fn check_nonces<P, T, N, M>(
        filler: &NonceFiller<M>,
        provider: &P,
        address: Address,
        start: u64,
    ) where
        P: Provider<T, N>,
        N: Network,
        T: Transport + Clone,
        M: NonceManager,
    {
        for i in start..start + 5 {
            let nonce = filler.nonce_manager.get_next_nonce(&provider, address).await.unwrap();
            assert_eq!(nonce, i);
        }
    }

    #[tokio::test]
    async fn smoke_test() {
        let filler = NonceFiller::<CachedNonceManager>::default();
        let provider = ProviderBuilder::new().on_anvil();
        let address = Address::ZERO;
        check_nonces(&filler, &provider, address, 0).await;

        #[cfg(feature = "anvil-api")]
        {
            use crate::ext::AnvilApi;
            filler.nonce_manager.nonces.clear();
            provider.anvil_set_nonce(address, U256::from(69)).await.unwrap();
            check_nonces(&filler, &provider, address, 69).await;
        }
    }

    #[tokio::test]
    async fn concurrency() {
        let filler = Arc::new(NonceFiller::<CachedNonceManager>::default());
        let provider = Arc::new(ProviderBuilder::new().on_anvil());
        let address = Address::ZERO;
        let tasks = (0..5)
            .map(|_| {
                let filler = Arc::clone(&filler);
                let provider = Arc::clone(&provider);
                tokio::spawn(async move {
                    filler.nonce_manager.get_next_nonce(&provider, address).await
                })
            })
            .collect::<Vec<_>>();

        let mut ns = Vec::new();
        for task in tasks {
            ns.push(task.await.unwrap().unwrap());
        }
        ns.sort_unstable();
        assert_eq!(ns, (0..5).collect::<Vec<_>>());

        assert_eq!(filler.nonce_manager.nonces.len(), 1);
        assert_eq!(*filler.nonce_manager.nonces.get(&address).unwrap().value().lock().await, 4);
    }

    #[tokio::test]
    async fn no_nonce_if_sender_unset() {
        let provider = ProviderBuilder::new().with_cached_nonce_management().on_anvil();

        let tx = TransactionRequest {
            value: Some(U256::from(100)),
            to: Some(address!("d8dA6BF26964aF9D7eEd9e03E53415D37aA96045").into()),
            gas_price: Some(20e9 as u128),
            gas: Some(21000),
            ..Default::default()
        };

        // errors because signer layer expects nonce to be set, which it is not
        assert!(provider.send_transaction(tx).await.is_err());
    }

    #[tokio::test]
    async fn increments_nonce() {
        let provider = ProviderBuilder::new().with_cached_nonce_management().on_anvil_with_wallet();

        let from = provider.default_signer_address();
        let tx = TransactionRequest {
            from: Some(from),
            value: Some(U256::from(100)),
            to: Some(address!("d8dA6BF26964aF9D7eEd9e03E53415D37aA96045").into()),
            gas_price: Some(20e9 as u128),
            gas: Some(21000),
            ..Default::default()
        };

        let pending = provider.send_transaction(tx.clone()).await.unwrap();
        let tx_hash = pending.watch().await.unwrap();
        let mined_tx = provider
            .get_transaction_by_hash(tx_hash)
            .await
            .expect("failed to fetch tx")
            .expect("tx not included");
        assert_eq!(mined_tx.nonce(), 0);

        let pending = provider.send_transaction(tx).await.unwrap();
        let tx_hash = pending.watch().await.unwrap();
        let mined_tx = provider
            .get_transaction_by_hash(tx_hash)
            .await
            .expect("fail to fetch tx")
            .expect("tx didn't finalize");
        assert_eq!(mined_tx.nonce(), 1);
    }
}