alloy_transport/layers/retry.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
use crate::{
error::{RpcErrorExt, TransportError, TransportErrorKind},
TransportFut,
};
use alloy_json_rpc::{RequestPacket, ResponsePacket};
use std::{
sync::{
atomic::{AtomicU32, Ordering},
Arc,
},
task::{Context, Poll},
time::Duration,
};
use tower::{Layer, Service};
use tracing::trace;
#[cfg(target_arch = "wasm32")]
use wasmtimer::tokio::sleep;
#[cfg(not(target_arch = "wasm32"))]
use tokio::time::sleep;
/// A Transport Layer that is responsible for retrying requests based on the
/// error type. See [`TransportError`].
///
/// TransportError: crate::error::TransportError
#[derive(Debug, Clone)]
pub struct RetryBackoffLayer {
/// The maximum number of retries for rate limit errors
max_rate_limit_retries: u32,
/// The initial backoff in milliseconds
initial_backoff: u64,
/// The number of compute units per second for this provider
compute_units_per_second: u64,
}
impl RetryBackoffLayer {
/// Creates a new retry layer with the given parameters.
pub const fn new(
max_rate_limit_retries: u32,
initial_backoff: u64,
compute_units_per_second: u64,
) -> Self {
Self { max_rate_limit_retries, initial_backoff, compute_units_per_second }
}
}
/// [RateLimitRetryPolicy] implements [RetryPolicy] to determine whether to retry depending on the
/// err.
#[derive(Debug, Copy, Clone, Default)]
#[non_exhaustive]
pub struct RateLimitRetryPolicy;
/// [RetryPolicy] defines logic for which [TransportError] instances should
/// the client retry the request and try to recover from.
pub trait RetryPolicy: Send + Sync + std::fmt::Debug {
/// Whether to retry the request based on the given `error`
fn should_retry(&self, error: &TransportError) -> bool;
/// Providers may include the `backoff` in the error response directly
fn backoff_hint(&self, error: &TransportError) -> Option<std::time::Duration>;
}
impl RetryPolicy for RateLimitRetryPolicy {
fn should_retry(&self, error: &TransportError) -> bool {
error.is_retryable()
}
/// Provides a backoff hint if the error response contains it
fn backoff_hint(&self, error: &TransportError) -> Option<std::time::Duration> {
error.backoff_hint()
}
}
impl<S> Layer<S> for RetryBackoffLayer {
type Service = RetryBackoffService<S>;
fn layer(&self, inner: S) -> Self::Service {
RetryBackoffService {
inner,
policy: RateLimitRetryPolicy,
max_rate_limit_retries: self.max_rate_limit_retries,
initial_backoff: self.initial_backoff,
compute_units_per_second: self.compute_units_per_second,
requests_enqueued: Arc::new(AtomicU32::new(0)),
}
}
}
/// A Tower Service used by the RetryBackoffLayer that is responsible for retrying requests based
/// on the error type. See [TransportError] and [RateLimitRetryPolicy].
#[derive(Debug, Clone)]
pub struct RetryBackoffService<S> {
/// The inner service
inner: S,
/// The retry policy
policy: RateLimitRetryPolicy,
/// The maximum number of retries for rate limit errors
max_rate_limit_retries: u32,
/// The initial backoff in milliseconds
initial_backoff: u64,
/// The number of compute units per second for this service
compute_units_per_second: u64,
/// The number of requests currently enqueued
requests_enqueued: Arc<AtomicU32>,
}
impl<S> RetryBackoffService<S> {
const fn initial_backoff(&self) -> Duration {
Duration::from_millis(self.initial_backoff)
}
}
impl<S> Service<RequestPacket> for RetryBackoffService<S>
where
S: Service<RequestPacket, Response = ResponsePacket, Error = TransportError>
+ Send
+ 'static
+ Clone,
S::Future: Send + 'static,
{
type Response = ResponsePacket;
type Error = TransportError;
type Future = TransportFut<'static>;
fn poll_ready(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
// Our middleware doesn't care about backpressure, so it's ready as long
// as the inner service is ready.
self.inner.poll_ready(cx)
}
fn call(&mut self, request: RequestPacket) -> Self::Future {
let inner = self.inner.clone();
let this = self.clone();
let mut inner = std::mem::replace(&mut self.inner, inner);
Box::pin(async move {
let ahead_in_queue = this.requests_enqueued.fetch_add(1, Ordering::SeqCst) as u64;
let mut rate_limit_retry_number: u32 = 0;
loop {
let err;
let res = inner.call(request.clone()).await;
match res {
Ok(res) => {
if let Some(e) = res.as_error() {
err = TransportError::ErrorResp(e.clone())
} else {
this.requests_enqueued.fetch_sub(1, Ordering::SeqCst);
return Ok(res);
}
}
Err(e) => err = e,
}
let should_retry = this.policy.should_retry(&err);
if should_retry {
rate_limit_retry_number += 1;
if rate_limit_retry_number > this.max_rate_limit_retries {
return Err(TransportErrorKind::custom_str(&format!(
"Max retries exceeded {}",
err
)));
}
trace!(%err, "retrying request");
let current_queued_reqs = this.requests_enqueued.load(Ordering::SeqCst) as u64;
// try to extract the requested backoff from the error or compute the next
// backoff based on retry count
let backoff_hint = this.policy.backoff_hint(&err);
let next_backoff = backoff_hint.unwrap_or_else(|| this.initial_backoff());
// requests are usually weighted and can vary from 10 CU to several 100 CU,
// cheaper requests are more common some example alchemy
// weights:
// - `eth_getStorageAt`: 17
// - `eth_getBlockByNumber`: 16
// - `eth_newFilter`: 20
//
// (coming from forking mode) assuming here that storage request will be the
// driver for Rate limits we choose `17` as the average cost
// of any request
const AVG_COST: u64 = 17u64;
let seconds_to_wait_for_compute_budget = compute_unit_offset_in_secs(
AVG_COST,
this.compute_units_per_second,
current_queued_reqs,
ahead_in_queue,
);
let total_backoff = next_backoff
+ std::time::Duration::from_secs(seconds_to_wait_for_compute_budget);
trace!(
total_backoff_millis = total_backoff.as_millis(),
budget_backoff_millis = seconds_to_wait_for_compute_budget * 1000,
default_backoff_millis = next_backoff.as_millis(),
backoff_hint_millis = backoff_hint.map(|d| d.as_millis()),
"(all in ms) backing off due to rate limit"
);
sleep(total_backoff).await;
} else {
this.requests_enqueued.fetch_sub(1, Ordering::SeqCst);
return Err(err);
}
}
})
}
}
/// Calculates an offset in seconds by taking into account the number of currently queued requests,
/// number of requests that were ahead in the queue when the request was first issued, the average
/// cost a weighted request (heuristic), and the number of available compute units per seconds.
///
/// Returns the number of seconds (the unit the remote endpoint measures compute budget) a request
/// is supposed to wait to not get rate limited. The budget per second is
/// `compute_units_per_second`, assuming an average cost of `avg_cost` this allows (in theory)
/// `compute_units_per_second / avg_cost` requests per seconds without getting rate limited.
/// By taking into account the number of concurrent request and the position in queue when the
/// request was first issued and determine the number of seconds a request is supposed to wait, if
/// at all
fn compute_unit_offset_in_secs(
avg_cost: u64,
compute_units_per_second: u64,
current_queued_requests: u64,
ahead_in_queue: u64,
) -> u64 {
let request_capacity_per_second = compute_units_per_second.saturating_div(avg_cost);
if current_queued_requests > request_capacity_per_second {
current_queued_requests.min(ahead_in_queue).saturating_div(request_capacity_per_second)
} else {
0
}
}