1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
extern crate proc_macro;
use anchor_syn::parser;
use heck::SnakeCase;
use quote::quote;
use syn::parse_macro_input;
/// The `#[interface]` attribute allows one to define an external program
/// dependency, without having any knowledge about the program, other than
/// the fact that it implements the given trait.
///
/// Additionally, the attribute generates a client that can be used to perform
/// CPI to these external dependencies.
///
/// # Example
///
/// In the following example, we have a counter program, where the count
/// can only be set if the configured external program authorizes it.
///
/// ## Defining an `#[interface]`
///
/// First we define the program that depends on an external interface.
///
/// ```ignore
/// use anchor_lang::prelude::*;
///
/// #[interface]
/// pub trait Auth<'info, T: Accounts<'info>> {
/// fn is_authorized(ctx: Context<T>, current: u64, new: u64) -> anchor_lang::Result<()>;
/// }
///
/// #[program]
/// pub mod counter {
/// use super::*;
///
/// #[state]
/// pub struct Counter {
/// pub count: u64,
/// pub auth_program: Pubkey,
/// }
///
/// impl Counter {
/// pub fn new(_ctx: Context<Empty>, auth_program: Pubkey) -> Result<Self> {
/// Ok(Self {
/// count: 0,
/// auth_program,
/// })
/// }
///
/// #[access_control(SetCount::accounts(&self, &ctx))]
/// pub fn set_count(&mut self, ctx: Context<SetCount>, new_count: u64) -> Result<()> {
/// // Ask the auth program if we should approve the transaction.
/// let cpi_program = ctx.accounts.auth_program.clone();
/// let cpi_ctx = CpiContext::new(cpi_program, Empty {});
///
/// // This is the client generated by the `#[interface]` attribute.
/// auth::is_authorized(cpi_ctx, self.count, new_count)?;
///
/// // Approved, so update.
/// self.count = new_count;
/// Ok(())
/// }
/// }
/// }
///
/// #[derive(Accounts)]
/// pub struct Empty {}
///
/// #[derive(Accounts)]
/// pub struct SetCount<'info> {
/// auth_program: AccountInfo<'info>,
/// }
///
/// impl<'info> SetCount<'info> {
/// pub fn accounts(counter: &Counter, ctx: &Context<SetCount>) -> Result<()> {
/// if ctx.accounts.auth_program.key != &counter.auth_program {
/// return Err(error!(ErrorCode::InvalidAuthProgram));
/// }
/// Ok(())
/// }
/// }
///
/// #[error_code]
/// pub enum ErrorCode {
/// #[msg("Invalid auth program.")]
/// InvalidAuthProgram,
/// }
///```
///
/// ## Defining an implementation
///
/// Now we define the program that implements the interface, which the above
/// program will call.
///
/// ```ignore
/// use anchor_lang::prelude::*;
/// use counter::Auth;
///
/// #[program]
/// pub mod counter_auth {
/// use super::*;
///
/// #[state]
/// pub struct CounterAuth;
///
/// impl<'info> Auth<'info, Empty> for CounterAuth {
/// fn is_authorized(_ctx: Context<Empty>, current: u64, new: u64) -> Result<()> {
/// if current % 2 == 0 {
/// if new % 2 == 0 {
/// return Err(ProgramError::Custom(50).into()); // Arbitrary error code.
/// }
/// } else {
/// if new % 2 == 1 {
/// return Err(ProgramError::Custom(60).into()); // Arbitrary error code.
/// }
/// }
/// Ok(())
/// }
/// }
/// }
/// #[derive(Accounts)]
/// pub struct Empty {}
/// ```
///
/// # Returning Values Across CPI
///
/// The caller above uses a `Result` to act as a boolean. However, in order
/// for this feature to be maximally useful, we need a way to return values from
/// interfaces. For now, one can do this by writing to a shared account, e.g.,
/// with the SPL's [Shared Memory Program](https://github.com/solana-labs/solana-program-library/tree/master/shared-memory).
/// In the future, Anchor will add the ability to return values across CPI
/// without having to worry about the details of shared memory accounts.
#[proc_macro_attribute]
pub fn interface(
_args: proc_macro::TokenStream,
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let item_trait = parse_macro_input!(input as syn::ItemTrait);
let trait_name = item_trait.ident.to_string();
let mod_name: proc_macro2::TokenStream = item_trait
.ident
.to_string()
.to_snake_case()
.parse()
.unwrap();
let methods: Vec<proc_macro2::TokenStream> = item_trait
.items
.iter()
.filter_map(|trait_item: &syn::TraitItem| match trait_item {
syn::TraitItem::Method(m) => Some(m),
_ => None,
})
.map(|method: &syn::TraitItemMethod| {
let method_name = &method.sig.ident;
let args: Vec<&syn::PatType> = method
.sig
.inputs
.iter()
.filter_map(|arg: &syn::FnArg| match arg {
syn::FnArg::Typed(pat_ty) => Some(pat_ty),
// TODO: just map this to None once we allow this feature.
_ => panic!("Invalid syntax. No self allowed."),
})
.filter(|pat_ty| {
let mut ty = parser::tts_to_string(&pat_ty.ty);
ty.retain(|s| !s.is_whitespace());
!ty.starts_with("Context<")
})
.collect();
let args_no_tys: Vec<&Box<syn::Pat>> = args
.iter()
.map(|arg| {
&arg.pat
})
.collect();
let args_struct = {
if args.is_empty() {
quote! {
use anchor_lang::prelude::borsh;
#[derive(anchor_lang::AnchorSerialize, anchor_lang::AnchorDeserialize)]
struct Args;
}
} else {
quote! {
use anchor_lang::prelude::borsh;
#[derive(anchor_lang::AnchorSerialize, anchor_lang::AnchorDeserialize)]
struct Args {
#(#args),*
}
}
}
};
let sighash_arr = anchor_syn::codegen::program::common::sighash(&trait_name, &method_name.to_string());
let sighash_tts: proc_macro2::TokenStream =
format!("{:?}", sighash_arr).parse().unwrap();
quote! {
pub fn #method_name<'a,'b, 'c, 'info, T: anchor_lang::Accounts<'info> + anchor_lang::ToAccountMetas + anchor_lang::ToAccountInfos<'info>>(
ctx: anchor_lang::context::CpiContext<'a, 'b, 'c, 'info, T>,
#(#args),*
) -> anchor_lang::Result<()> {
#args_struct
let ix = {
let ix = Args {
#(#args_no_tys),*
};
let mut ix_data = anchor_lang::AnchorSerialize::try_to_vec(&ix)
.map_err(|_| anchor_lang::error::ErrorCode::InstructionDidNotSerialize)?;
let mut data = #sighash_tts.to_vec();
data.append(&mut ix_data);
let accounts = ctx.to_account_metas(None);
anchor_lang::solana_program::instruction::Instruction {
program_id: *ctx.program.key,
accounts,
data,
}
};
let mut acc_infos = ctx.to_account_infos();
acc_infos.push(ctx.program.clone());
anchor_lang::solana_program::program::invoke_signed(
&ix,
&acc_infos,
ctx.signer_seeds,
).map_err(Into::into)
}
}
})
.collect();
proc_macro::TokenStream::from(quote! {
#item_trait
/// Anchor generated module for invoking programs implementing an
/// `#[interface]` via CPI.
mod #mod_name {
use super::*;
#(#methods)*
}
})
}