1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
use crate::parser;
use crate::{Program, RpcArg, State};
use heck::{CamelCase, SnakeCase};
use quote::quote;

pub fn generate(program: Program) -> proc_macro2::TokenStream {
    let mod_name = &program.name;
    let instruction_name = instruction_enum_name(&program);
    let dispatch = generate_dispatch(&program);
    let handlers_non_inlined = generate_non_inlined_handlers(&program);
    let methods = generate_methods(&program);
    let instruction = generate_instruction(&program);
    let cpi = generate_cpi(&program);
    let accounts = generate_accounts(&program);

    quote! {
        // TODO: remove once we allow segmented paths in `Accounts` structs.
        use #mod_name::*;


        #[cfg(not(feature = "no-entrypoint"))]
        anchor_lang::solana_program::entrypoint!(entry);
        #[cfg(not(feature = "no-entrypoint"))]
        fn entry(program_id: &Pubkey, accounts: &[AccountInfo], instruction_data: &[u8]) -> ProgramResult {
            if cfg!(not(feature = "no-idl")) {
                if instruction_data.len() >= 8 {
                    if anchor_lang::idl::IDL_IX_TAG.to_le_bytes() == instruction_data[..8] {
                        return __private::__idl(program_id, accounts, &instruction_data[8..]);
                    }
                }
            }
            let mut data: &[u8] = instruction_data;
            let ix = instruction::#instruction_name::deserialize(&mut data)
                .map_err(|_| ProgramError::Custom(1))?; // todo: error code

            #dispatch
        }

        // Create a private module to not clutter the program's namespace.
        mod __private {
            use super::*;

            #handlers_non_inlined
        }

        #accounts

        #instruction

        #methods

        #cpi
    }
}

pub fn generate_dispatch(program: &Program) -> proc_macro2::TokenStream {
    let ctor_state_dispatch_arm = match &program.state {
        None => quote! { /* no-op */ },
        Some(state) => {
            let variant_arm = generate_ctor_variant(program, state);
            let ctor_args = generate_ctor_args(state);
            quote! {
                instruction::#variant_arm => __private::__ctor(program_id, accounts, #(#ctor_args),*),
            }
        }
    };
    let state_dispatch_arms: Vec<proc_macro2::TokenStream> = match &program.state {
        None => vec![],
        Some(s) => s
            .methods
            .iter()
            .map(|rpc: &crate::StateRpc| {
                let rpc_arg_names: Vec<&syn::Ident> =
                    rpc.args.iter().map(|arg| &arg.name).collect();
                let variant_arm: proc_macro2::TokenStream = generate_ix_variant(
                    program,
                    rpc.raw_method.sig.ident.to_string(),
                    &rpc.args,
                    true,
                );
                let rpc_name: proc_macro2::TokenStream = {
                    let name = &rpc.raw_method.sig.ident.to_string();
                    format!("__{}", name).parse().unwrap()
                };
                quote! {
                    instruction::#variant_arm => {
                        __private::#rpc_name(program_id, accounts, #(#rpc_arg_names),*)
                    }
                }
            })
            .collect(),
    };
    let dispatch_arms: Vec<proc_macro2::TokenStream> = program
        .rpcs
        .iter()
        .map(|rpc| {
            let rpc_arg_names: Vec<&syn::Ident> = rpc.args.iter().map(|arg| &arg.name).collect();
            let variant_arm = generate_ix_variant(
                program,
                rpc.raw_method.sig.ident.to_string(),
                &rpc.args,
                false,
            );
            let rpc_name = &rpc.raw_method.sig.ident;
            quote! {
                instruction::#variant_arm => {
                    __private::#rpc_name(program_id, accounts, #(#rpc_arg_names),*)
                }
            }
        })
        .collect();

    quote! {
        match ix {
            #ctor_state_dispatch_arm
            #(#state_dispatch_arms),*
            #(#dispatch_arms),*
        }
    }
}

// Generate non-inlined wrappers for each instruction handler, since Solana's
// BPF max stack size can't handle reasonable sized dispatch trees without doing
// so.
pub fn generate_non_inlined_handlers(program: &Program) -> proc_macro2::TokenStream {
    let program_name = &program.name;
    let non_inlined_idl: proc_macro2::TokenStream = {
        quote! {
            // Entry for all IDL related instructions. Use the "no-idl" feature
            // to eliminate this code, for example, if one wants to make the
            // IDL no longer mutable or if one doesn't want to store the IDL
            // on chain.
            #[inline(never)]
            #[cfg(not(feature = "no-idl"))]
            pub fn __idl(program_id: &Pubkey, accounts: &[AccountInfo], idl_ix_data: &[u8]) -> ProgramResult {
                let mut accounts = accounts;
                let mut data: &[u8] = idl_ix_data;

                let ix = anchor_lang::idl::IdlInstruction::deserialize(&mut data)
                    .map_err(|_| ProgramError::Custom(1))?; // todo

                match ix {
                    anchor_lang::idl::IdlInstruction::Create { data_len } => {
                        let mut accounts = anchor_lang::idl::IdlCreateAccounts::try_accounts(program_id, &mut accounts)?;
                        __idl_create_account(program_id, &mut accounts, data_len)?;
                        accounts.exit(program_id)?;
                    },
                    anchor_lang::idl::IdlInstruction::Write { data } => {
                        let mut accounts = anchor_lang::idl::IdlAccounts::try_accounts(program_id, &mut accounts)?;
                        __idl_write(program_id, &mut accounts, data)?;
                        accounts.exit(program_id)?;
                    },
                    anchor_lang::idl::IdlInstruction::Clear => {
                        let mut accounts = anchor_lang::idl::IdlAccounts::try_accounts(program_id, &mut accounts)?;
                        __idl_clear(program_id, &mut accounts)?;
                        accounts.exit(program_id)?;
                    },
                    anchor_lang::idl::IdlInstruction::SetAuthority { new_authority } => {
                        let mut accounts = anchor_lang::idl::IdlAccounts::try_accounts(program_id, &mut accounts)?;
                        __idl_set_authority(program_id, &mut accounts, new_authority)?;
                        accounts.exit(program_id)?;
                    }
                }
                Ok(())
            }

            // One time IDL account initializer. Will faill on subsequent
            // invocations.
            #[inline(never)]
            pub fn __idl_create_account(
                program_id: &Pubkey,
                accounts: &mut anchor_lang::idl::IdlCreateAccounts,
                data_len: u64,
            ) -> ProgramResult {
                // Create the IDL's account.
                let from = accounts.from.key;
                let (base, nonce) = Pubkey::find_program_address(&[], accounts.program.key);
                let seed = anchor_lang::idl::IdlAccount::seed();
                let owner = accounts.program.key;
                let to = Pubkey::create_with_seed(&base, seed, owner).unwrap();
                // Space: account discriminator || authority pubkey || vec len || vec data
                let space = 8 + 32 + 4 + data_len as usize;
                let lamports = accounts.rent.minimum_balance(space);
                let seeds = &[&[nonce][..]];
                let ix = anchor_lang::solana_program::system_instruction::create_account_with_seed(
                    from,
                    &to,
                    &base,
                    seed,
                    lamports,
                    space as u64,
                    owner,
                );
                anchor_lang::solana_program::program::invoke_signed(
                    &ix,
                    &[
                        accounts.from.clone(),
                        accounts.to.clone(),
                        accounts.base.clone(),
                        accounts.system_program.clone(),
                    ],
                    &[seeds],
                )?;

                // Deserialize the newly created account.
                let mut idl_account = {
                    let mut account_data =  accounts.to.try_borrow_data()?;
                    let mut account_data_slice: &[u8] = &account_data;
                    anchor_lang::idl::IdlAccount::try_deserialize_unchecked(
                        &mut account_data_slice,
                    )?
                };

                // Set the authority.
                idl_account.authority = *accounts.from.key;

                // Store the new account data.
                let mut data = accounts.to.try_borrow_mut_data()?;
                let dst: &mut [u8] = &mut data;
                let mut cursor = std::io::Cursor::new(dst);
                idl_account.try_serialize(&mut cursor)?;

                Ok(())
            }

            #[inline(never)]
            pub fn __idl_write(
                program_id: &Pubkey,
                accounts: &mut anchor_lang::idl::IdlAccounts,
                idl_data: Vec<u8>,
            ) -> ProgramResult {
                let mut idl = &mut accounts.idl;
                idl.data.extend(idl_data);
                Ok(())
            }

            #[inline(never)]
            pub fn __idl_clear(
                program_id: &Pubkey,
                accounts: &mut anchor_lang::idl::IdlAccounts,
            ) -> ProgramResult {
                accounts.idl.data = vec![];
                Ok(())
            }

            #[inline(never)]
            pub fn __idl_set_authority(
                program_id: &Pubkey,
                accounts: &mut anchor_lang::idl::IdlAccounts,
                new_authority: Pubkey,
            ) -> ProgramResult {
                accounts.idl.authority = new_authority;
                Ok(())
            }
        }
    };
    let non_inlined_ctor: proc_macro2::TokenStream = match &program.state {
        None => quote! {},
        Some(state) => {
            let ctor_typed_args = generate_ctor_typed_args(state);
            let ctor_untyped_args = generate_ctor_args(state);
            let name = &state.strct.ident;
            let mod_name = &program.name;
            let anchor_ident = &state.ctor_anchor;
            quote! {
                // One time state account initializer. Will faill on subsequent
                // invocations.
                #[inline(never)]
                pub fn __ctor(program_id: &Pubkey, accounts: &[AccountInfo], #(#ctor_typed_args),*) -> ProgramResult {
                    let mut remaining_accounts: &[AccountInfo] = accounts;

                    // Deserialize accounts.
                    let ctor_accounts = anchor_lang::Ctor::try_accounts(program_id, &mut remaining_accounts)?;
                    let mut ctor_user_def_accounts = #anchor_ident::try_accounts(program_id, &mut remaining_accounts)?;

                    // Invoke the ctor.
                    let instance = #mod_name::#name::new(
                        anchor_lang::Context::new(
                            program_id,
                            &mut ctor_user_def_accounts,
                            remaining_accounts,
                        ),
                        #(#ctor_untyped_args),*
                    )?;

                    // Create the solana account for the ctor data.
                    let from = ctor_accounts.from.key;
                    let (base, nonce) = Pubkey::find_program_address(&[], ctor_accounts.program.key);
                    let seed = anchor_lang::ProgramState::<#name>::seed();
                    let owner = ctor_accounts.program.key;
                    let to = Pubkey::create_with_seed(&base, seed, owner).unwrap();
                    // Add 8 for the account discriminator.
                    let space = 8 + instance.try_to_vec().map_err(|_| ProgramError::Custom(1))?.len();
                    let lamports = ctor_accounts.rent.minimum_balance(space);
                    let seeds = &[&[nonce][..]];
                    let ix = anchor_lang::solana_program::system_instruction::create_account_with_seed(
                        from,
                        &to,
                        &base,
                        seed,
                        lamports,
                        space as u64,
                        owner,
                    );
                    anchor_lang::solana_program::program::invoke_signed(
                        &ix,
                        &[
                            ctor_accounts.from.clone(),
                            ctor_accounts.to.clone(),
                            ctor_accounts.base.clone(),
                            ctor_accounts.system_program.clone(),
                        ],
                        &[seeds],
                    )?;

                    // Serialize the state and save it to storage.
                    ctor_user_def_accounts.exit(program_id)?;
                    let mut data = ctor_accounts.to.try_borrow_mut_data()?;
                    let dst: &mut [u8] = &mut data;
                    let mut cursor = std::io::Cursor::new(dst);
                    instance.try_serialize(&mut cursor)?;

                    Ok(())
                }
            }
        }
    };
    let non_inlined_state_handlers: Vec<proc_macro2::TokenStream> = match &program.state {
        None => vec![],
        Some(state) => state
            .methods
            .iter()
            .map(|rpc| {
                let rpc_params: Vec<_> = rpc.args.iter().map(|arg| &arg.raw_arg).collect();
                let rpc_arg_names: Vec<&syn::Ident> =
                    rpc.args.iter().map(|arg| &arg.name).collect();
                let private_rpc_name: proc_macro2::TokenStream = {
                    let n = format!("__{}", &rpc.raw_method.sig.ident.to_string());
                    n.parse().unwrap()
                };
                let rpc_name = &rpc.raw_method.sig.ident;
                let state_ty: proc_macro2::TokenStream = state.name.parse().unwrap();
                let anchor_ident = &rpc.anchor_ident;
                quote! {
                    #[inline(never)]
                    pub fn #private_rpc_name(
                        program_id: &Pubkey,
                        accounts: &[AccountInfo],
                        #(#rpc_params),*
                    ) -> ProgramResult {

                        let mut remaining_accounts: &[AccountInfo] = accounts;
                        if remaining_accounts.len() == 0 {
                            return Err(ProgramError::Custom(1)); // todo
                        }

                        // Deserialize the program state account.
                        let state_account = &remaining_accounts[0];
                        let mut state: #state_ty = {
                            let data = state_account.try_borrow_data()?;
                            let mut sliced: &[u8] = &data;
                            anchor_lang::AccountDeserialize::try_deserialize(&mut sliced)?
                        };

                        remaining_accounts = &remaining_accounts[1..];

                        // Deserialize the program's execution context.
                        let mut accounts = #anchor_ident::try_accounts(
                            program_id,
                            &mut remaining_accounts,
                        )?;
                        let ctx = Context::new(program_id, &mut accounts, remaining_accounts);

                        // Execute user defined function.
                        state.#rpc_name(
                            ctx,
                            #(#rpc_arg_names),*
                        )?;

                        // Serialize the state and save it to storage.
                        accounts.exit(program_id)?;
                        let mut data = state_account.try_borrow_mut_data()?;
                        let dst: &mut [u8] = &mut data;
                        let mut cursor = std::io::Cursor::new(dst);
                        state.try_serialize(&mut cursor)?;

                        Ok(())
                    }
                }
            })
            .collect(),
    };
    let non_inlined_handlers: Vec<proc_macro2::TokenStream> = program
        .rpcs
        .iter()
        .map(|rpc| {
            let rpc_params: Vec<_> = rpc.args.iter().map(|arg| &arg.raw_arg).collect();
            let rpc_arg_names: Vec<&syn::Ident> = rpc.args.iter().map(|arg| &arg.name).collect();
            let rpc_name = &rpc.raw_method.sig.ident;
            let anchor = &rpc.anchor_ident;

            quote! {
                #[inline(never)]
                pub fn #rpc_name(
                    program_id: &Pubkey,
                    accounts: &[AccountInfo],
                    #(#rpc_params),*
                ) -> ProgramResult {
                    let mut remaining_accounts: &[AccountInfo] = accounts;
                    let mut accounts = #anchor::try_accounts(program_id, &mut remaining_accounts)?;
                    #program_name::#rpc_name(
                        Context::new(program_id, &mut accounts, remaining_accounts),
                        #(#rpc_arg_names),*
                    )?;
                    accounts.exit(program_id)
                }
            }
        })
        .collect();

    quote! {
        #non_inlined_idl
        #non_inlined_ctor
        #(#non_inlined_state_handlers)*
        #(#non_inlined_handlers)*
    }
}

pub fn generate_ctor_variant(program: &Program, state: &State) -> proc_macro2::TokenStream {
    let enum_name = instruction_enum_name(program);
    let ctor_args = generate_ctor_args(state);
    if ctor_args.len() == 0 {
        quote! {
            #enum_name::__Ctor
        }
    } else {
        quote! {
            #enum_name::__Ctor {
                #(#ctor_args),*
            }
        }
    }
}

pub fn generate_ctor_typed_variant_with_comma(program: &Program) -> proc_macro2::TokenStream {
    match &program.state {
        None => quote! {},
        Some(state) => {
            let ctor_args = generate_ctor_typed_args(state);
            if ctor_args.len() == 0 {
                quote! {
                    __Ctor,
                }
            } else {
                quote! {
                    __Ctor {
                        #(#ctor_args),*
                    },
                }
            }
        }
    }
}

fn generate_ctor_typed_args(state: &State) -> Vec<syn::PatType> {
    state
        .ctor
        .sig
        .inputs
        .iter()
        .filter_map(|arg: &syn::FnArg| match arg {
            syn::FnArg::Typed(pat_ty) => {
                let mut arg_str = parser::tts_to_string(&pat_ty.ty);
                arg_str.retain(|c| !c.is_whitespace());
                if arg_str.starts_with("Context<") {
                    return None;
                }
                Some(pat_ty.clone())
            }
            _ => panic!("Invalid syntaxe,"),
        })
        .collect()
}

fn generate_ctor_args(state: &State) -> Vec<Box<syn::Pat>> {
    state
        .ctor
        .sig
        .inputs
        .iter()
        .filter_map(|arg: &syn::FnArg| match arg {
            syn::FnArg::Typed(pat_ty) => {
                let mut arg_str = parser::tts_to_string(&pat_ty.ty);
                arg_str.retain(|c| !c.is_whitespace());
                if arg_str.starts_with("Context<") {
                    return None;
                }
                Some(pat_ty.pat.clone())
            }
            _ => panic!(""),
        })
        .collect()
}

pub fn generate_ix_variant(
    program: &Program,
    name: String,
    args: &[RpcArg],
    underscore: bool,
) -> proc_macro2::TokenStream {
    let enum_name = instruction_enum_name(program);
    let rpc_arg_names: Vec<&syn::Ident> = args.iter().map(|arg| &arg.name).collect();
    let rpc_name_camel: proc_macro2::TokenStream = {
        let n = name.to_camel_case();
        if underscore {
            format!("__{}", n).parse().unwrap()
        } else {
            n.parse().unwrap()
        }
    };

    if args.len() == 0 {
        quote! {
            #enum_name::#rpc_name_camel
        }
    } else {
        quote! {
            #enum_name::#rpc_name_camel {
                #(#rpc_arg_names),*
            }
        }
    }
}

pub fn generate_methods(program: &Program) -> proc_macro2::TokenStream {
    let program_mod = &program.program_mod;
    quote! {
        #program_mod
    }
}

pub fn generate_instruction(program: &Program) -> proc_macro2::TokenStream {
    let enum_name = instruction_enum_name(program);
    let ctor_variant = generate_ctor_typed_variant_with_comma(program);
    let state_method_variants: Vec<proc_macro2::TokenStream> = match &program.state {
        None => vec![],
        Some(state) => state
            .methods
            .iter()
            .map(|method| {
                let rpc_name_camel: proc_macro2::TokenStream = {
                    let name = format!(
                        "__{}",
                        &method.raw_method.sig.ident.to_string().to_camel_case(),
                    );
                    name.parse().unwrap()
                };
                let raw_args: Vec<&syn::PatType> =
                    method.args.iter().map(|arg| &arg.raw_arg).collect();
                // If no args, output a "unit" variant instead of a struct variant.
                if method.args.len() == 0 {
                    quote! {
                        #rpc_name_camel,
                    }
                } else {
                    quote! {
                        #rpc_name_camel {
                            #(#raw_args),*
                        },
                    }
                }
            })
            .collect(),
    };
    let variants: Vec<proc_macro2::TokenStream> = program
        .rpcs
        .iter()
        .map(|rpc| {
            let rpc_name_camel = proc_macro2::Ident::new(
                &rpc.raw_method.sig.ident.to_string().to_camel_case(),
                rpc.raw_method.sig.ident.span(),
            );
            let raw_args: Vec<&syn::PatType> = rpc.args.iter().map(|arg| &arg.raw_arg).collect();
            // If no args, output a "unit" variant instead of a struct variant.
            if rpc.args.len() == 0 {
                quote! {
                    #rpc_name_camel
                }
            } else {
                quote! {
                    #rpc_name_camel {
                        #(#raw_args),*
                    }
                }
            }
        })
        .collect();

    quote! {
        /// `instruction` is a macro generated module containing the program's
        /// instruction enum, where each variant is created from each method
        /// handler in the `#[program]` mod. These should be used directly, when
        /// specifying instructions on a client.
        pub mod instruction {
            use super::*;
            #[derive(AnchorSerialize, AnchorDeserialize)]
            pub enum #enum_name {
                #ctor_variant
                #(#state_method_variants)*
                #(#variants),*
            }
        }
    }
}

fn instruction_enum_name(program: &Program) -> proc_macro2::Ident {
    proc_macro2::Ident::new(
        &format!("{}Instruction", program.name.to_string().to_camel_case()),
        program.name.span(),
    )
}

fn generate_accounts(program: &Program) -> proc_macro2::TokenStream {
    let mut accounts = std::collections::HashSet::new();

    // Got through state accounts.
    if let Some(state) = &program.state {
        for rpc in &state.methods {
            let anchor_ident = &rpc.anchor_ident;
            // TODO: move to fn and share with accounts.rs.
            let macro_name = format!(
                "__client_accounts_{}",
                anchor_ident.to_string().to_snake_case()
            );
            accounts.insert(macro_name);
        }
    }

    // Go through instruction accounts.
    for rpc in &program.rpcs {
        let anchor_ident = &rpc.anchor_ident;
        // TODO: move to fn and share with accounts.rs.
        let macro_name = format!(
            "__client_accounts_{}",
            anchor_ident.to_string().to_snake_case()
        );
        accounts.insert(macro_name);
    }

    // Build the tokens from all accounts
    let account_structs: Vec<proc_macro2::TokenStream> = accounts
        .iter()
        .map(|macro_name: &String| {
            let macro_name: proc_macro2::TokenStream = macro_name.parse().unwrap();
            quote! {
                pub use crate::#macro_name::*;
            }
        })
        .collect();

    // TODO: calculate the account size and add it as a constant field to
    //       each struct here. This is convenient for Rust clients.

    quote! {
        /// `accounts` is a macro generated module, providing a set of structs
        /// mirroring the structs deriving `Accounts`, where each field is
        /// a `Pubkey`. This is useful for specifying accounts for a client.
        pub mod accounts {
            #(#account_structs)*
        }
    }
}

fn generate_cpi(program: &Program) -> proc_macro2::TokenStream {
    let cpi_methods: Vec<proc_macro2::TokenStream> = program
        .rpcs
        .iter()
        .map(|rpc| {
            let accounts_ident = &rpc.anchor_ident;
            let cpi_method = {
                let ix_variant = generate_ix_variant(
                    program,
                    rpc.raw_method.sig.ident.to_string(),
                    &rpc.args,
                    false,
                );
                let method_name = &rpc.ident;
                let args: Vec<&syn::PatType> = rpc.args.iter().map(|arg| &arg.raw_arg).collect();
                quote! {
                    pub fn #method_name<'a, 'b, 'c, 'info>(
                        ctx: CpiContext<'a, 'b, 'c, 'info, #accounts_ident<'info>>,
                        #(#args),*
                    ) -> ProgramResult {
                        let ix = {
                            let ix = instruction::#ix_variant;
                            let data = AnchorSerialize::try_to_vec(&ix)
                                .map_err(|_| ProgramError::InvalidInstructionData)?;
                            let accounts = ctx.accounts.to_account_metas(None);
                            anchor_lang::solana_program::instruction::Instruction {
                                program_id: *ctx.program.key,
                                accounts,
                                data,
                            }
                        };
                        let mut acc_infos = ctx.accounts.to_account_infos();
                        acc_infos.push(ctx.program.clone());
                        anchor_lang::solana_program::program::invoke_signed(
                            &ix,
                            &acc_infos,
                            ctx.signer_seeds,
                        )
                    }
                }
            };

            cpi_method
        })
        .collect();
    quote! {
        #[cfg(feature = "cpi")]
        pub mod cpi {
            use super::*;

            #(#cpi_methods)*
        }
    }
}