1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! A library for working with [Apache Avro](https://avro.apache.org/) in Rust.
//!
//! Please check our [documentation](https://docs.rs/apache-avro) for examples, tutorials and API reference.
//!
//! **[Apache Avro](https://avro.apache.org/)** is a data serialization system which provides rich
//! data structures and a compact, fast, binary data format.
//!
//! All data in Avro is schematized, as in the following example:
//!
//! ```text
//! {
//!     "type": "record",
//!     "name": "test",
//!     "fields": [
//!         {"name": "a", "type": "long", "default": 42},
//!         {"name": "b", "type": "string"}
//!     ]
//! }
//! ```
//!
//! There are basically two ways of handling Avro data in Rust:
//!
//! * **as Avro-specialized data types** based on an Avro schema;
//! * **as generic Rust serde-compatible types** implementing/deriving `Serialize` and
//! `Deserialize`;
//!
//! **apache-avro** provides a way to read and write both these data representations easily and
//! efficiently.
//!
//! # Installing the library
//!
//!
//! Add to your `Cargo.toml`:
//!
//! ```toml
//! [dependencies]
//! apache-avro = "x.y"
//! ```
//!
//! Or in case you want to leverage the **Snappy** codec:
//!
//! ```toml
//! [dependencies.apache-avro]
//! version = "x.y"
//! features = ["snappy"]
//! ```
//!
//! # Upgrading to a newer minor version
//!
//! The library is still in beta, so there might be backward-incompatible changes between minor
//! versions. If you have troubles upgrading, check the [version upgrade guide](migration_guide.md).
//!
//! # Defining a schema
//!
//! An Avro data cannot exist without an Avro schema. Schemas **must** be used while writing and
//! **can** be used while reading and they carry the information regarding the type of data we are
//! handling. Avro schemas are used for both schema validation and resolution of Avro data.
//!
//! Avro schemas are defined in **JSON** format and can just be parsed out of a raw string:
//!
//! ```
//! use apache_avro::Schema;
//!
//! let raw_schema = r#"
//!     {
//!         "type": "record",
//!         "name": "test",
//!         "fields": [
//!             {"name": "a", "type": "long", "default": 42},
//!             {"name": "b", "type": "string"}
//!         ]
//!     }
//! "#;
//!
//! // if the schema is not valid, this function will return an error
//! let schema = Schema::parse_str(raw_schema).unwrap();
//!
//! // schemas can be printed for debugging
//! println!("{:?}", schema);
//! ```
//!
//! Additionally, a list of of definitions (which may depend on each other) can be given and all of
//! them will be parsed into the corresponding schemas.
//!
//! ```
//! use apache_avro::Schema;
//!
//! let raw_schema_1 = r#"{
//!         "name": "A",
//!         "type": "record",
//!         "fields": [
//!             {"name": "field_one", "type": "float"}
//!         ]
//!     }"#;
//!
//! // This definition depends on the definition of A above
//! let raw_schema_2 = r#"{
//!         "name": "B",
//!         "type": "record",
//!         "fields": [
//!             {"name": "field_one", "type": "A"}
//!         ]
//!     }"#;
//!
//! // if the schemas are not valid, this function will return an error
//! let schemas = Schema::parse_list(&[raw_schema_1, raw_schema_2]).unwrap();
//!
//! // schemas can be printed for debugging
//! println!("{:?}", schemas);
//! ```
//! *N.B.* It is important to note that the composition of schema definitions requires schemas with names.
//! For this reason, only schemas of type Record, Enum, and Fixed should be input into this function.
//!
//! The library provides also a programmatic interface to define schemas without encoding them in
//! JSON (for advanced use), but we highly recommend the JSON interface. Please read the API
//! reference in case you are interested.
//!
//! For more information about schemas and what kind of information you can encapsulate in them,
//! please refer to the appropriate section of the
//! [Avro Specification](https://avro.apache.org/docs/current/spec.html#schemas).
//!
//! # Writing data
//!
//! Once we have defined a schema, we are ready to serialize data in Avro, validating them against
//! the provided schema in the process. As mentioned before, there are two ways of handling Avro
//! data in Rust.
//!
//! **NOTE:** The library also provides a low-level interface for encoding a single datum in Avro
//! bytecode without generating markers and headers (for advanced use), but we highly recommend the
//! `Writer` interface to be totally Avro-compatible. Please read the API reference in case you are
//! interested.
//!
//! ## The avro way
//!
//! Given that the schema we defined above is that of an Avro *Record*, we are going to use the
//! associated type provided by the library to specify the data we want to serialize:
//!
//! ```
//! # use apache_avro::Schema;
//! use apache_avro::types::Record;
//! use apache_avro::Writer;
//! #
//! # let raw_schema = r#"
//! #     {
//! #         "type": "record",
//! #         "name": "test",
//! #         "fields": [
//! #             {"name": "a", "type": "long", "default": 42},
//! #             {"name": "b", "type": "string"}
//! #         ]
//! #     }
//! # "#;
//! # let schema = Schema::parse_str(raw_schema).unwrap();
//! // a writer needs a schema and something to write to
//! let mut writer = Writer::new(&schema, Vec::new());
//!
//! // the Record type models our Record schema
//! let mut record = Record::new(writer.schema()).unwrap();
//! record.put("a", 27i64);
//! record.put("b", "foo");
//!
//! // schema validation happens here
//! writer.append(record).unwrap();
//!
//! // this is how to get back the resulting avro bytecode
//! // this performs a flush operation to make sure data has been written, so it can fail
//! // you can also call `writer.flush()` yourself without consuming the writer
//! let encoded = writer.into_inner().unwrap();
//! ```
//!
//! The vast majority of the times, schemas tend to define a record as a top-level container
//! encapsulating all the values to convert as fields and providing documentation for them, but in
//! case we want to directly define an Avro value, the library offers that capability via the
//! `Value` interface.
//!
//! ```
//! use apache_avro::types::Value;
//!
//! let mut value = Value::String("foo".to_string());
//! ```
//!
//! ## The serde way
//!
//! Given that the schema we defined above is an Avro *Record*, we can directly use a Rust struct
//! deriving `Serialize` to model our data:
//!
//! ```
//! # use apache_avro::Schema;
//! # use serde::Serialize;
//! use apache_avro::Writer;
//!
//! #[derive(Debug, Serialize)]
//! struct Test {
//!     a: i64,
//!     b: String,
//! }
//!
//! # let raw_schema = r#"
//! #     {
//! #         "type": "record",
//! #         "name": "test",
//! #         "fields": [
//! #             {"name": "a", "type": "long", "default": 42},
//! #             {"name": "b", "type": "string"}
//! #         ]
//! #     }
//! # "#;
//! # let schema = Schema::parse_str(raw_schema).unwrap();
//! // a writer needs a schema and something to write to
//! let mut writer = Writer::new(&schema, Vec::new());
//!
//! // the structure models our Record schema
//! let test = Test {
//!     a: 27,
//!     b: "foo".to_owned(),
//! };
//!
//! // schema validation happens here
//! writer.append_ser(test).unwrap();
//!
//! // this is how to get back the resulting avro bytecode
//! // this performs a flush operation to make sure data is written, so it can fail
//! // you can also call `writer.flush()` yourself without consuming the writer
//! let encoded = writer.into_inner();
//! ```
//!
//! The vast majority of the times, schemas tend to define a record as a top-level container
//! encapsulating all the values to convert as fields and providing documentation for them, but in
//! case we want to directly define an Avro value, any type implementing `Serialize` should work.
//!
//! ```
//! let mut value = "foo".to_string();
//! ```
//!
//! ## Using codecs to compress data
//!
//! Avro supports three different compression codecs when encoding data:
//!
//! * **Null**: leaves data uncompressed;
//! * **Deflate**: writes the data block using the deflate algorithm as specified in RFC 1951, and
//! typically implemented using the zlib library. Note that this format (unlike the "zlib format" in
//! RFC 1950) does not have a checksum.
//! * **Snappy**: uses Google's [Snappy](http://google.github.io/snappy/) compression library. Each
//! compressed block is followed by the 4-byte, big-endianCRC32 checksum of the uncompressed data in
//! the block. You must enable the `snappy` feature to use this codec.
//!
//! To specify a codec to use to compress data, just specify it while creating a `Writer`:
//! ```
//! # use apache_avro::Schema;
//! use apache_avro::Writer;
//! use apache_avro::Codec;
//! #
//! # let raw_schema = r#"
//! #     {
//! #         "type": "record",
//! #         "name": "test",
//! #         "fields": [
//! #             {"name": "a", "type": "long", "default": 42},
//! #             {"name": "b", "type": "string"}
//! #         ]
//! #     }
//! # "#;
//! # let schema = Schema::parse_str(raw_schema).unwrap();
//! let mut writer = Writer::with_codec(&schema, Vec::new(), Codec::Deflate);
//! ```
//!
//! # Reading data
//!
//! As far as reading Avro encoded data goes, we can just use the schema encoded with the data to
//! read them. The library will do it automatically for us, as it already does for the compression
//! codec:
//!
//! ```
//! use apache_avro::Reader;
//! # use apache_avro::Schema;
//! # use apache_avro::types::Record;
//! # use apache_avro::Writer;
//! #
//! # let raw_schema = r#"
//! #     {
//! #         "type": "record",
//! #         "name": "test",
//! #         "fields": [
//! #             {"name": "a", "type": "long", "default": 42},
//! #             {"name": "b", "type": "string"}
//! #         ]
//! #     }
//! # "#;
//! # let schema = Schema::parse_str(raw_schema).unwrap();
//! # let mut writer = Writer::new(&schema, Vec::new());
//! # let mut record = Record::new(writer.schema()).unwrap();
//! # record.put("a", 27i64);
//! # record.put("b", "foo");
//! # writer.append(record).unwrap();
//! # let input = writer.into_inner().unwrap();
//! // reader creation can fail in case the input to read from is not Avro-compatible or malformed
//! let reader = Reader::new(&input[..]).unwrap();
//! ```
//!
//! In case, instead, we want to specify a different (but compatible) reader schema from the schema
//! the data has been written with, we can just do as the following:
//! ```
//! use apache_avro::Schema;
//! use apache_avro::Reader;
//! # use apache_avro::types::Record;
//! # use apache_avro::Writer;
//! #
//! # let writer_raw_schema = r#"
//! #     {
//! #         "type": "record",
//! #         "name": "test",
//! #         "fields": [
//! #             {"name": "a", "type": "long", "default": 42},
//! #             {"name": "b", "type": "string"}
//! #         ]
//! #     }
//! # "#;
//! # let writer_schema = Schema::parse_str(writer_raw_schema).unwrap();
//! # let mut writer = Writer::new(&writer_schema, Vec::new());
//! # let mut record = Record::new(writer.schema()).unwrap();
//! # record.put("a", 27i64);
//! # record.put("b", "foo");
//! # writer.append(record).unwrap();
//! # let input = writer.into_inner().unwrap();
//!
//! let reader_raw_schema = r#"
//!     {
//!         "type": "record",
//!         "name": "test",
//!         "fields": [
//!             {"name": "a", "type": "long", "default": 42},
//!             {"name": "b", "type": "string"},
//!             {"name": "c", "type": "long", "default": 43}
//!         ]
//!     }
//! "#;
//!
//! let reader_schema = Schema::parse_str(reader_raw_schema).unwrap();
//!
//! // reader creation can fail in case the input to read from is not Avro-compatible or malformed
//! let reader = Reader::with_schema(&reader_schema, &input[..]).unwrap();
//! ```
//!
//! The library will also automatically perform schema resolution while reading the data.
//!
//! For more information about schema compatibility and resolution, please refer to the
//! [Avro Specification](https://avro.apache.org/docs/current/spec.html#schemas).
//!
//! As usual, there are two ways to handle Avro data in Rust, as you can see below.
//!
//! **NOTE:** The library also provides a low-level interface for decoding a single datum in Avro
//! bytecode without markers and header (for advanced use), but we highly recommend the `Reader`
//! interface to leverage all Avro features. Please read the API reference in case you are
//! interested.
//!
//!
//! ## The avro way
//!
//! We can just read directly instances of `Value` out of the `Reader` iterator:
//!
//! ```
//! # use apache_avro::Schema;
//! # use apache_avro::types::Record;
//! # use apache_avro::Writer;
//! use apache_avro::Reader;
//! #
//! # let raw_schema = r#"
//! #     {
//! #         "type": "record",
//! #         "name": "test",
//! #         "fields": [
//! #             {"name": "a", "type": "long", "default": 42},
//! #             {"name": "b", "type": "string"}
//! #         ]
//! #     }
//! # "#;
//! # let schema = Schema::parse_str(raw_schema).unwrap();
//! # let schema = Schema::parse_str(raw_schema).unwrap();
//! # let mut writer = Writer::new(&schema, Vec::new());
//! # let mut record = Record::new(writer.schema()).unwrap();
//! # record.put("a", 27i64);
//! # record.put("b", "foo");
//! # writer.append(record).unwrap();
//! # let input = writer.into_inner().unwrap();
//! let reader = Reader::new(&input[..]).unwrap();
//!
//! // value is a Result  of an Avro Value in case the read operation fails
//! for value in reader {
//!     println!("{:?}", value.unwrap());
//! }
//!
//! ```
//!
//! ## The serde way
//!
//! Alternatively, we can use a Rust type implementing `Deserialize` and representing our schema to
//! read the data into:
//!
//! ```
//! # use apache_avro::Schema;
//! # use apache_avro::Writer;
//! # use serde::{Deserialize, Serialize};
//! use apache_avro::Reader;
//! use apache_avro::from_value;
//!
//! # #[derive(Serialize)]
//! #[derive(Debug, Deserialize)]
//! struct Test {
//!     a: i64,
//!     b: String,
//! }
//!
//! # let raw_schema = r#"
//! #     {
//! #         "type": "record",
//! #         "name": "test",
//! #         "fields": [
//! #             {"name": "a", "type": "long", "default": 42},
//! #             {"name": "b", "type": "string"}
//! #         ]
//! #     }
//! # "#;
//! # let schema = Schema::parse_str(raw_schema).unwrap();
//! # let mut writer = Writer::new(&schema, Vec::new());
//! # let test = Test {
//! #     a: 27,
//! #     b: "foo".to_owned(),
//! # };
//! # writer.append_ser(test).unwrap();
//! # let input = writer.into_inner().unwrap();
//! let reader = Reader::new(&input[..]).unwrap();
//!
//! // value is a Result in case the read operation fails
//! for value in reader {
//!     println!("{:?}", from_value::<Test>(&value.unwrap()));
//! }
//! ```
//!
//! # Putting everything together
//!
//! The following is an example of how to combine everything showed so far and it is meant to be a
//! quick reference of the library interface:
//!
//! ```
//! use apache_avro::{Codec, Reader, Schema, Writer, from_value, types::Record, Error};
//! use serde::{Deserialize, Serialize};
//!
//! #[derive(Debug, Deserialize, Serialize)]
//! struct Test {
//!     a: i64,
//!     b: String,
//! }
//!
//! fn main() -> Result<(), Error> {
//!     let raw_schema = r#"
//!         {
//!             "type": "record",
//!             "name": "test",
//!             "fields": [
//!                 {"name": "a", "type": "long", "default": 42},
//!                 {"name": "b", "type": "string"}
//!             ]
//!         }
//!     "#;
//!
//!     let schema = Schema::parse_str(raw_schema)?;
//!
//!     println!("{:?}", schema);
//!
//!     let mut writer = Writer::with_codec(&schema, Vec::new(), Codec::Deflate);
//!
//!     let mut record = Record::new(writer.schema()).unwrap();
//!     record.put("a", 27i64);
//!     record.put("b", "foo");
//!
//!     writer.append(record)?;
//!
//!     let test = Test {
//!         a: 27,
//!         b: "foo".to_owned(),
//!     };
//!
//!     writer.append_ser(test)?;
//!
//!     let input = writer.into_inner()?;
//!     let reader = Reader::with_schema(&schema, &input[..])?;
//!
//!     for record in reader {
//!         println!("{:?}", from_value::<Test>(&record?));
//!     }
//!     Ok(())
//! }
//! ```
//!
//! `apache-avro` also supports the logical types listed in the [Avro specification](https://avro.apache.org/docs/current/spec.html#Logical+Types):
//!
//! 1. `Decimal` using the [`num_bigint`](https://docs.rs/num-bigint/0.2.6/num_bigint) crate
//! 1. UUID using the [`uuid`](https://docs.rs/uuid/1.0.0/uuid) crate
//! 1. Date, Time (milli) as `i32` and Time (micro) as `i64`
//! 1. Timestamp (milli and micro) as `i64`
//! 1. Duration as a custom type with `months`, `days` and `millis` accessor methods each of which returns an `i32`
//!
//! Note that the on-disk representation is identical to the underlying primitive/complex type.
//!
//! ### Read and write logical types
//!
//! ```rust
//! use apache_avro::{
//!     types::Record, types::Value, Codec, Days, Decimal, Duration, Millis, Months, Reader, Schema,
//!     Writer, Error,
//! };
//! use num_bigint::ToBigInt;
//!
//! fn main() -> Result<(), Error> {
//!     let raw_schema = r#"
//!     {
//!       "type": "record",
//!       "name": "test",
//!       "fields": [
//!         {
//!           "name": "decimal_fixed",
//!           "type": {
//!             "type": "fixed",
//!             "size": 2,
//!             "name": "decimal"
//!           },
//!           "logicalType": "decimal",
//!           "precision": 4,
//!           "scale": 2
//!         },
//!         {
//!           "name": "decimal_var",
//!           "type": "bytes",
//!           "logicalType": "decimal",
//!           "precision": 10,
//!           "scale": 3
//!         },
//!         {
//!           "name": "uuid",
//!           "type": "string",
//!           "logicalType": "uuid"
//!         },
//!         {
//!           "name": "date",
//!           "type": "int",
//!           "logicalType": "date"
//!         },
//!         {
//!           "name": "time_millis",
//!           "type": "int",
//!           "logicalType": "time-millis"
//!         },
//!         {
//!           "name": "time_micros",
//!           "type": "long",
//!           "logicalType": "time-micros"
//!         },
//!         {
//!           "name": "timestamp_millis",
//!           "type": "long",
//!           "logicalType": "timestamp-millis"
//!         },
//!         {
//!           "name": "timestamp_micros",
//!           "type": "long",
//!           "logicalType": "timestamp-micros"
//!         },
//!         {
//!           "name": "duration",
//!           "type": {
//!             "type": "fixed",
//!             "size": 12,
//!             "name": "duration"
//!           },
//!           "logicalType": "duration"
//!         }
//!       ]
//!     }
//!     "#;
//!
//!     let schema = Schema::parse_str(raw_schema)?;
//!
//!     println!("{:?}", schema);
//!
//!     let mut writer = Writer::with_codec(&schema, Vec::new(), Codec::Deflate);
//!
//!     let mut record = Record::new(writer.schema()).unwrap();
//!     record.put("decimal_fixed", Decimal::from(9936.to_bigint().unwrap().to_signed_bytes_be()));
//!     record.put("decimal_var", Decimal::from((-32442.to_bigint().unwrap()).to_signed_bytes_be()));
//!     record.put("uuid", uuid::Uuid::parse_str("550e8400-e29b-41d4-a716-446655440000").unwrap());
//!     record.put("date", Value::Date(1));
//!     record.put("time_millis", Value::TimeMillis(2));
//!     record.put("time_micros", Value::TimeMicros(3));
//!     record.put("timestamp_millis", Value::TimestampMillis(4));
//!     record.put("timestamp_micros", Value::TimestampMicros(5));
//!     record.put("duration", Duration::new(Months::new(6), Days::new(7), Millis::new(8)));
//!
//!     writer.append(record)?;
//!
//!     let input = writer.into_inner()?;
//!     let reader = Reader::with_schema(&schema, &input[..])?;
//!
//!     for record in reader {
//!         println!("{:?}", record?);
//!     }
//!     Ok(())
//! }
//! ```
//!
//! ## Calculate Avro schema fingerprint
//!
//! This library supports calculating the following fingerprints:
//!
//!  - SHA-256
//!  - MD5
//!  - Rabin
//!
//! An example of fingerprinting for the supported fingerprints:
//!
//! ```rust
//! use apache_avro::rabin::Rabin;
//! use apache_avro::{Schema, Error};
//! use md5::Md5;
//! use sha2::Sha256;
//!
//! fn main() -> Result<(), Error> {
//!     let raw_schema = r#"
//!         {
//!             "type": "record",
//!             "name": "test",
//!             "fields": [
//!                 {"name": "a", "type": "long", "default": 42},
//!                 {"name": "b", "type": "string"}
//!             ]
//!         }
//!     "#;
//!     let schema = Schema::parse_str(raw_schema)?;
//!     println!("{}", schema.fingerprint::<Sha256>());
//!     println!("{}", schema.fingerprint::<Md5>());
//!     println!("{}", schema.fingerprint::<Rabin>());
//!     Ok(())
//! }
//! ```
//!
//! ## Ill-formed data
//!
//! In order to ease decoding, the Binary Encoding specification of Avro data
//! requires some fields to have their length encoded alongside the data.
//!
//! If encoded data passed to a `Reader` has been ill-formed, it can happen that
//! the bytes meant to contain the length of data are bogus and could result
//! in extravagant memory allocation.
//!
//! To shield users from ill-formed data, `apache-avro` sets a limit (default: 512MB)
//! to any allocation it will perform when decoding data.
//!
//! If you expect some of your data fields to be larger than this limit, be sure
//! to make use of the `max_allocation_bytes` function before reading **any** data
//! (we leverage Rust's [`std::sync::Once`](https://doc.rust-lang.org/std/sync/struct.Once.html)
//! mechanism to initialize this value, if
//! any call to decode is made before a call to `max_allocation_bytes`, the limit
//! will be 512MB throughout the lifetime of the program).
//!
//!
//! ```rust
//! use apache_avro::max_allocation_bytes;
//!
//! max_allocation_bytes(2 * 1024 * 1024 * 1024);  // 2GB
//!
//! // ... happily decode large data
//!
//! ```
//!
//! ## Check schemas compatibility
//!
//! This library supports checking for schemas compatibility.
//!
//! Examples of checking for compatibility:
//!
//! 1. Compatible schemas
//!
//! Explanation: an int array schema can be read by a long array schema- an int
//! (32bit signed integer) fits into a long (64bit signed integer)
//!
//! ```rust
//! use apache_avro::{Schema, schema_compatibility::SchemaCompatibility};
//!
//! let writers_schema = Schema::parse_str(r#"{"type": "array", "items":"int"}"#).unwrap();
//! let readers_schema = Schema::parse_str(r#"{"type": "array", "items":"long"}"#).unwrap();
//! assert_eq!(true, SchemaCompatibility::can_read(&writers_schema, &readers_schema));
//! ```
//!
//! 2. Incompatible schemas (a long array schema cannot be read by an int array schema)
//!
//! Explanation: a long array schema cannot be read by an int array schema- a
//! long (64bit signed integer) does not fit into an int (32bit signed integer)
//!
//! ```rust
//! use apache_avro::{Schema, schema_compatibility::SchemaCompatibility};
//!
//! let writers_schema = Schema::parse_str(r#"{"type": "array", "items":"long"}"#).unwrap();
//! let readers_schema = Schema::parse_str(r#"{"type": "array", "items":"int"}"#).unwrap();
//! assert_eq!(false, SchemaCompatibility::can_read(&writers_schema, &readers_schema));
//! ```

mod codec;
mod de;
mod decimal;
mod decode;
mod duration;
mod encode;
mod error;
mod reader;
mod ser;
mod util;
mod writer;

pub mod rabin;
pub mod schema;
pub mod schema_compatibility;
pub mod types;

pub use codec::Codec;
pub use de::from_value;
pub use decimal::Decimal;
pub use duration::{Days, Duration, Millis, Months};
pub use error::Error;
pub use reader::{
    from_avro_datum, from_avro_datum_schemata, read_marker, GenericSingleObjectReader, Reader,
    SpecificSingleObjectReader,
};
pub use schema::{AvroSchema, Schema};
pub use ser::to_value;
pub use util::{max_allocation_bytes, set_serde_human_readable};
pub use writer::{
    to_avro_datum, to_avro_datum_schemata, GenericSingleObjectWriter, SpecificSingleObjectWriter,
    Writer,
};

#[cfg(feature = "derive")]
pub use apache_avro_derive::*;

#[macro_use]
extern crate log;

/// A convenience type alias for `Result`s with `Error`s.
pub type AvroResult<T> = Result<T, Error>;

#[cfg(test)]
mod tests {
    use crate::{
        from_avro_datum,
        types::{Record, Value},
        Codec, Reader, Schema, Writer,
    };
    use pretty_assertions::assert_eq;

    //TODO: move where it fits better
    #[test]
    fn test_enum_default() {
        let writer_raw_schema = r#"
            {
                "type": "record",
                "name": "test",
                "fields": [
                    {"name": "a", "type": "long", "default": 42},
                    {"name": "b", "type": "string"}
                ]
            }
        "#;
        let reader_raw_schema = r#"
            {
                "type": "record",
                "name": "test",
                "fields": [
                    {"name": "a", "type": "long", "default": 42},
                    {"name": "b", "type": "string"},
                    {
                        "name": "c",
                        "type": {
                            "type": "enum",
                            "name": "suit",
                            "symbols": ["diamonds", "spades", "clubs", "hearts"]
                        },
                        "default": "spades"
                    }
                ]
            }
        "#;
        let writer_schema = Schema::parse_str(writer_raw_schema).unwrap();
        let reader_schema = Schema::parse_str(reader_raw_schema).unwrap();
        let mut writer = Writer::with_codec(&writer_schema, Vec::new(), Codec::Null);
        let mut record = Record::new(writer.schema()).unwrap();
        record.put("a", 27i64);
        record.put("b", "foo");
        writer.append(record).unwrap();
        let input = writer.into_inner().unwrap();
        let mut reader = Reader::with_schema(&reader_schema, &input[..]).unwrap();
        assert_eq!(
            reader.next().unwrap().unwrap(),
            Value::Record(vec![
                ("a".to_string(), Value::Long(27)),
                ("b".to_string(), Value::String("foo".to_string())),
                ("c".to_string(), Value::Enum(1, "spades".to_string())),
            ])
        );
        assert!(reader.next().is_none());
    }

    //TODO: move where it fits better
    #[test]
    fn test_enum_string_value() {
        let raw_schema = r#"
            {
                "type": "record",
                "name": "test",
                "fields": [
                    {"name": "a", "type": "long", "default": 42},
                    {"name": "b", "type": "string"},
                    {
                        "name": "c",
                        "type": {
                            "type": "enum",
                            "name": "suit",
                            "symbols": ["diamonds", "spades", "clubs", "hearts"]
                        },
                        "default": "spades"
                    }
                ]
            }
        "#;
        let schema = Schema::parse_str(raw_schema).unwrap();
        let mut writer = Writer::with_codec(&schema, Vec::new(), Codec::Null);
        let mut record = Record::new(writer.schema()).unwrap();
        record.put("a", 27i64);
        record.put("b", "foo");
        record.put("c", "clubs");
        writer.append(record).unwrap();
        let input = writer.into_inner().unwrap();
        let mut reader = Reader::with_schema(&schema, &input[..]).unwrap();
        assert_eq!(
            reader.next().unwrap().unwrap(),
            Value::Record(vec![
                ("a".to_string(), Value::Long(27)),
                ("b".to_string(), Value::String("foo".to_string())),
                ("c".to_string(), Value::Enum(2, "clubs".to_string())),
            ])
        );
        assert!(reader.next().is_none());
    }

    //TODO: move where it fits better
    #[test]
    fn test_enum_no_reader_schema() {
        let writer_raw_schema = r#"
            {
                "type": "record",
                "name": "test",
                "fields": [
                    {"name": "a", "type": "long", "default": 42},
                    {"name": "b", "type": "string"},
                    {
                        "name": "c",
                        "type": {
                            "type": "enum",
                            "name": "suit",
                            "symbols": ["diamonds", "spades", "clubs", "hearts"]
                        },
                        "default": "spades"
                    }
                ]
            }
        "#;
        let writer_schema = Schema::parse_str(writer_raw_schema).unwrap();
        let mut writer = Writer::with_codec(&writer_schema, Vec::new(), Codec::Null);
        let mut record = Record::new(writer.schema()).unwrap();
        record.put("a", 27i64);
        record.put("b", "foo");
        record.put("c", "clubs");
        writer.append(record).unwrap();
        let input = writer.into_inner().unwrap();
        let mut reader = Reader::new(&input[..]).unwrap();
        assert_eq!(
            reader.next().unwrap().unwrap(),
            Value::Record(vec![
                ("a".to_string(), Value::Long(27)),
                ("b".to_string(), Value::String("foo".to_string())),
                ("c".to_string(), Value::Enum(2, "clubs".to_string())),
            ])
        );
    }

    #[test]
    fn test_illformed_length() {
        let raw_schema = r#"
            {
                "type": "record",
                "name": "test",
                "fields": [
                    {"name": "a", "type": "long", "default": 42},
                    {"name": "b", "type": "string"}
                ]
            }
        "#;

        let schema = Schema::parse_str(raw_schema).unwrap();

        // Would allocated 18446744073709551605 bytes
        let illformed: &[u8] = &[0x3e, 0x15, 0xff, 0x1f, 0x15, 0xff];

        let value = from_avro_datum(&schema, &mut &*illformed, None);
        assert!(value.is_err());
    }
}