ark_algebra_test_templates/
fields.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
#![allow(unused)]
#![allow(clippy::eq_op)]

use ark_std::rand::Rng;

#[derive(Default, Clone, Copy, Debug)]
pub struct DummyFlags;

impl ark_serialize::Flags for DummyFlags {
    const BIT_SIZE: usize = 200;

    fn u8_bitmask(&self) -> u8 {
        0
    }

    fn from_u8(_value: u8) -> Option<Self> {
        Some(DummyFlags)
    }
}

pub fn sum_of_products_test_helper<F: ark_ff::Field, const N: usize>(rng: &mut impl Rng) {
    let a: [_; N] = core::array::from_fn(|_| F::rand(rng));
    let b: [_; N] = core::array::from_fn(|_| F::rand(rng));
    let result_1 = F::sum_of_products(&a, &b);
    let result_2 = a.into_iter().zip(b).map(|(a, b)| a * b).sum::<F>();
    assert_eq!(result_1, result_2, "length: {N}");

    let two_inv = F::from(2u64).inverse().unwrap();
    let neg_one = -F::one();
    let a_max = neg_one * two_inv - F::one();
    let b_max = neg_one * two_inv - F::one();
    let a = [a_max; N];
    let b = [b_max; N];

    let result_1 = F::sum_of_products(&a, &b);
    let result_2 = a.into_iter().zip(b).map(|(a, b)| a * b).sum::<F>();
    assert_eq!(result_1, result_2, "length: {N}");
}

pub fn prime_field_sum_of_products_test_helper<F: ark_ff::PrimeField, const N: usize>(
    a_max: F,
    b_max: F,
) {
    let a = [a_max; N];
    let b = [b_max; N];
    let result_1 = F::sum_of_products(&a, &b);
    let result_2 = a.into_iter().zip(b).map(|(a, b)| a * b).sum::<F>();
    assert_eq!(result_1, result_2, "length: {N}");
}

#[macro_export]
#[doc(hidden)]
macro_rules! __test_field {
    ($field: ty) => {
        #[test]
        pub fn test_frobenius() {
            use ark_ff::Field;
            use ark_std::UniformRand;
            let mut rng = ark_std::test_rng();
            let characteristic = <$field>::characteristic();
            let max_power = (<$field>::extension_degree() + 1) as usize;

            for _ in 0..ITERATIONS {
                let a = <$field>::rand(&mut rng);

                let mut a_0 = a;
                a_0.frobenius_map_in_place(0);
                assert_eq!(a, a_0);
                assert_eq!(a, a.frobenius_map(0));

                let mut a_q = a.pow(&characteristic);
                for power in 1..max_power {
                    assert_eq!(a_q, a.frobenius_map(power));

                    let mut a_qi = a;
                    a_qi.frobenius_map_in_place(power);
                    assert_eq!(a_qi, a_q, "failed on power {}", power);

                    a_q = a_q.pow(&characteristic);
                }
            }
        }

        #[test]
        fn test_serialization() {
            use ark_serialize::*;
            use ark_std::UniformRand;
            for compress in [Compress::Yes, Compress::No] {
                for validate in [Validate::Yes, Validate::No] {
                    let buf_size = <$field>::zero().serialized_size(compress);

                    let buffer_size =
                        buffer_bit_byte_size(<$field as Field>::BasePrimeField::MODULUS_BIT_SIZE as usize).1 *
                        (<$field>::extension_degree() as usize);
                    assert_eq!(buffer_size, buf_size);

                    let mut rng = ark_std::test_rng();

                    for _ in 0..ITERATIONS {
                        let a = <$field>::rand(&mut rng);
                        {
                            let mut serialized = vec![0u8; buf_size];
                            let mut cursor = Cursor::new(&mut serialized[..]);
                            a.serialize_with_mode(&mut cursor, compress).unwrap();

                            let mut cursor = Cursor::new(&serialized[..]);
                            let b = <$field>::deserialize_with_mode(&mut cursor, compress, validate).unwrap();
                            assert_eq!(a, b);
                        }



                        {
                            let mut serialized = vec![0; buf_size];
                            let result = matches!(
                                a.serialize_with_flags(&mut &mut serialized[..], $crate::fields::DummyFlags).unwrap_err(),
                                SerializationError::NotEnoughSpace
                            );
                            assert!(result);

                            let result = matches!(
                                <$field>::deserialize_with_flags::<_, $crate::fields::DummyFlags>(&mut &serialized[..]).unwrap_err(),
                                SerializationError::NotEnoughSpace,
                            );
                            assert!(result);

                            {
                                let mut serialized = vec![0; buf_size - 1];
                                let mut cursor = Cursor::new(&mut serialized[..]);
                                a.serialize_with_mode(&mut cursor, compress).unwrap_err();

                                let mut cursor = Cursor::new(&serialized[..]);
                                <$field>::deserialize_with_mode(&mut cursor, compress, validate).unwrap_err();
                            }
                        }
                    }
                }
            }

        }

        #[test]
        fn test_add_properties() {
            use ark_std::UniformRand;
            use ark_ff::AdditiveGroup;

            let mut rng = test_rng();
            let zero = <$field>::zero();
            assert_eq!(-zero, zero);
            assert!(zero.is_zero());
            assert!(<$field>::ZERO.is_zero());
            assert_eq!(<$field>::ZERO, zero);

            for _ in 0..(ITERATIONS * ITERATIONS) {
                // Associativity
                let a = <$field>::rand(&mut rng);
                let b = <$field>::rand(&mut rng);
                let c = <$field>::rand(&mut rng);

                assert_eq!((a + b) + c, a + (b + c));

                // Commutativity
                assert_eq!(a + b, b + a);

                // Identity
                assert_eq!(zero + a, a);
                assert_eq!(zero + b, b);
                assert_eq!(zero + c, c);

                // Negation
                assert_eq!(-a + a, zero);
                assert_eq!(-b + b, zero);
                assert_eq!(-c + c, zero);
                assert_eq!(-zero, zero);

                // Associativity and commutativity simultaneously
                let t0 = (a + &b) + &c; // (a + b) + c
                let t1 = (a + &c) + &b; // (a + c) + b
                let t2 = (b + &c) + &a; // (b + c) + a

                assert_eq!(t0, t1);
                assert_eq!(t1, t2);

                // Doubling
                assert_eq!(a.double(), a + a);
                assert_eq!(b.double(), b + b);
                assert_eq!(c.double(), c + c);
            }
        }

        #[test]
        fn test_sub_properties() {
            use ark_std::UniformRand;
            let mut rng = test_rng();
            let zero = <$field>::zero();

            for _ in 0..(ITERATIONS * ITERATIONS){
                // Anti-commutativity
                let a = <$field>::rand(&mut rng);
                let b = <$field>::rand(&mut rng);
                assert!(((a - b) + (b - a)).is_zero());

                // Identity
                assert_eq!(zero - a, -a);
                assert_eq!(zero - b, -b);

                assert_eq!(a - zero, a);
                assert_eq!(b - zero, b);
            }
        }

        #[test]
        fn test_mul_properties() {
            use ark_std::UniformRand;
            let mut rng = test_rng();
            let zero = <$field>::zero();
            let one = <$field>::one();
            assert_eq!(one.inverse().unwrap(), one, "One inverse failed");
            assert!(one.is_one(), "One is not one");

            assert!(<$field>::ONE.is_one(), "One constant is not one");
            assert_eq!(<$field>::ONE, one, "One constant is incorrect");

            for _ in 0..ITERATIONS {
                // Associativity
                let a = <$field>::rand(&mut rng);
                let b = <$field>::rand(&mut rng);
                let c = <$field>::rand(&mut rng);
                assert_eq!((a * b) * c, a * (b * c), "Associativity failed");

                // Commutativity
                assert_eq!(a * b, b * a, "Commutativity failed");

                // Identity
                assert_eq!(one * a, a, "Identity mul failed");
                assert_eq!(one * b, b, "Identity mul failed");
                assert_eq!(one * c, c, "Identity mul failed");

                assert_eq!(zero * a, zero, "Mul by zero failed");
                assert_eq!(zero * b, zero, "Mul by zero failed");
                assert_eq!(zero * c, zero, "Mul by zero failed");

                // Inverses
                assert_eq!(a * a.inverse().unwrap(), one, "Mul by inverse failed");
                assert_eq!(b * b.inverse().unwrap(), one, "Mul by inverse failed");
                assert_eq!(c * c.inverse().unwrap(), one, "Mul by inverse failed");

                // Associativity and commutativity simultaneously
                let t0 = (a * b) * c;
                let t1 = (a * c) * b;
                let t2 = (b * c) * a;
                assert_eq!(t0, t1, "Associativity + commutativity failed");
                assert_eq!(t1, t2, "Associativity + commutativity failed");

                // Squaring
                assert_eq!(a * a, a.square(), "Squaring failed");
                assert_eq!(b * b, b.square(), "Squaring failed");
                assert_eq!(c * c, c.square(), "Squaring failed");

                // Distributivity
                assert_eq!(a * (b + c), a * b + a * c, "Distributivity failed");
                assert_eq!(b * (a + c), b * a + b * c, "Distributivity failed");
                assert_eq!(c * (a + b), c * a + c * b, "Distributivity failed");
                assert_eq!((a + b).square(), a.square() + b.square() + a * ark_ff::AdditiveGroup::double(&b), "Distributivity for square failed");
                assert_eq!((b + c).square(), c.square() + b.square() + c * ark_ff::AdditiveGroup::double(&b), "Distributivity for square failed");
                assert_eq!((c + a).square(), a.square() + c.square() + a * ark_ff::AdditiveGroup::double(&c), "Distributivity for square failed");
            }
        }

        #[test]
        fn test_pow() {
            use ark_std::UniformRand;
            let mut rng = test_rng();
            for _ in 0..(ITERATIONS / 10) {
                for i in 0..20 {
                    // Exponentiate by various small numbers and ensure it is
                    // consistent with repeated multiplication.
                    let a = <$field>::rand(&mut rng);
                    let target = a.pow(&[i]);
                    let mut c = <$field>::one();
                    for _ in 0..i {
                        c *= a;
                    }
                    assert_eq!(c, target);

                }
                let a = <$field>::rand(&mut rng);

                // Exponentiating by the modulus should have no effect;
                let mut result = a;
                for i in 0..<$field>::extension_degree() {
                    result = result.pow(<$field>::characteristic())
                }
                assert_eq!(a, result);

                // Commutativity
                let e1: [u64; 10] = rng.gen();
                let e2: [u64; 10] = rng.gen();
                assert_eq!(a.pow(&e1).pow(&e2), a.pow(&e2).pow(&e1));

                // Distributivity
                let e3: [u64; 10] = rng.gen();
                let a_to_e1 = a.pow(e1);
                let a_to_e2 = a.pow(e2);
                let a_to_e1_plus_e2 = a.pow(e1) * a.pow(e2);
                assert_eq!(a_to_e1_plus_e2.pow(&e3), a_to_e1.pow(&e3) * a_to_e2.pow(&e3));
            }
        }

        #[test]
        fn test_sum_of_products_tests() {
            use ark_std::{UniformRand, rand::Rng};
            let rng = &mut test_rng();

            for _ in 0..ITERATIONS {
                $crate::fields::sum_of_products_test_helper::<$field, 1>(rng);
                $crate::fields::sum_of_products_test_helper::<$field, 2>(rng);
                $crate::fields::sum_of_products_test_helper::<$field, 3>(rng);
                $crate::fields::sum_of_products_test_helper::<$field, 4>(rng);
                $crate::fields::sum_of_products_test_helper::<$field, 5>(rng);
                $crate::fields::sum_of_products_test_helper::<$field, 6>(rng);
                $crate::fields::sum_of_products_test_helper::<$field, 7>(rng);
                $crate::fields::sum_of_products_test_helper::<$field, 8>(rng);
                $crate::fields::sum_of_products_test_helper::<$field, 9>(rng);
                $crate::fields::sum_of_products_test_helper::<$field, 10>(rng);
            }
        }

        #[test]
        fn test_sqrt() {
            if <$field>::SQRT_PRECOMP.is_some() {
                use ark_std::UniformRand;
                let rng = &mut test_rng();

                assert!(<$field>::zero().sqrt().unwrap().is_zero());

                for _ in 0..ITERATIONS {
                    // Ensure sqrt(a^2) = a or -a
                    let a = <$field>::rand(rng);
                    let b = a.square();
                    let sqrt = b.sqrt().unwrap();
                    assert!(a == sqrt || -a == sqrt);

                    if let Some(mut b) = a.sqrt() {
                        b.square_in_place();
                        assert_eq!(a, b);
                    }

                    let a = <$field>::rand(rng);
                    let b = a.square();
                    assert_eq!(b.legendre(), LegendreSymbol::QuadraticResidue);
                }
            }
        }


        #[test]
        fn test_mul_by_base_field_elem() {
            use ark_std::UniformRand;
            let rng = &mut test_rng();

            for _ in 0..ITERATIONS {
                let a = vec![<<$field as Field>::BasePrimeField>::rand(rng); <$field>::extension_degree() as usize];
                let b = <<$field as Field>::BasePrimeField>::rand(rng);

                let mut a = <$field>::from_base_prime_field_elems(a).unwrap();
                let computed = a.mul_by_base_prime_field(&b);

                let embedded_b = <$field as Field>::from_base_prime_field(b);

                let naive = a*embedded_b;

                assert_eq!(computed, naive);
            }
        }
    };
    ($field: ty; fft) => {
        $crate::__test_field!($field);

        #[test]
        fn test_fft() {
            use ark_ff::FftField;
            assert_eq!(
                <$field>::TWO_ADIC_ROOT_OF_UNITY.pow([1 << <$field>::TWO_ADICITY]),
                <$field>::one()
            );

            if let Some(small_subgroup_base) = <$field>::SMALL_SUBGROUP_BASE {
                let small_subgroup_base_adicity = <$field>::SMALL_SUBGROUP_BASE_ADICITY.unwrap();
                let large_subgroup_root_of_unity = <$field>::LARGE_SUBGROUP_ROOT_OF_UNITY.unwrap();
                let pow =
                (1 << <$field>::TWO_ADICITY) * (small_subgroup_base as u64).pow(small_subgroup_base_adicity);
                assert_eq!(large_subgroup_root_of_unity.pow([pow]), <$field>::one());

                for i in 0..=<$field>::TWO_ADICITY {
                    for j in 0..=small_subgroup_base_adicity {
                        let size = (1u64 << i) * (small_subgroup_base as u64).pow(j);
                        let root = <$field>::get_root_of_unity(size as u64).unwrap();
                        assert_eq!(root.pow([size as u64]), <$field>::one());
                    }
                }
            } else {
                for i in 0..=<$field>::TWO_ADICITY {
                    let size = 1 << i;
                    let root = <$field>::get_root_of_unity(size).unwrap();
                    assert_eq!(root.pow([size as u64]), <$field>::one());
                }
            }
        }
    };
    ($field: ty; prime) => {
        $crate::__test_field!($field; fft);

        #[test]
        fn test_sum_of_products_edge_case() {
            use ark_ff::{AdditiveGroup, BigInteger};

            let mut a_max = <$field>::ZERO.into_bigint();
            for (i, limb) in a_max.as_mut().iter_mut().enumerate() {
                if i == <$field as PrimeField>::BigInt::NUM_LIMBS - 1 {
                    let mod_num_bits_mod_64 =
                        64 * <$field as PrimeField>::BigInt::NUM_LIMBS
                        - (<$field as PrimeField>::MODULUS_BIT_SIZE as usize);
                    if mod_num_bits_mod_64 == 63 {
                        *limb = 0u64;
                    } else {
                        *limb = u64::MAX >> (mod_num_bits_mod_64 + 1);
                    }
                } else {
                    *limb = u64::MAX;
                }
            }
            let a_max = <$field>::from_bigint(a_max).unwrap();
            let b_max = -<$field>::one(); // p - 1.

            $crate::fields::prime_field_sum_of_products_test_helper::<_, 1>(a_max, b_max);
            $crate::fields::prime_field_sum_of_products_test_helper::<_, 2>(a_max, b_max);
            $crate::fields::prime_field_sum_of_products_test_helper::<_, 3>(a_max, b_max);
            $crate::fields::prime_field_sum_of_products_test_helper::<_, 4>(a_max, b_max);
            $crate::fields::prime_field_sum_of_products_test_helper::<_, 5>(a_max, b_max);
            $crate::fields::prime_field_sum_of_products_test_helper::<_, 6>(a_max, b_max);
            $crate::fields::prime_field_sum_of_products_test_helper::<_, 7>(a_max, b_max);
            $crate::fields::prime_field_sum_of_products_test_helper::<_, 8>(a_max, b_max);
            $crate::fields::prime_field_sum_of_products_test_helper::<_, 9>(a_max, b_max);
            $crate::fields::prime_field_sum_of_products_test_helper::<_, 10>(a_max, b_max);
        }

        #[test]
        fn test_constants() {
            use ark_ff::{FpConfig, BigInteger, SqrtPrecomputation};
            use $crate::num_bigint::BigUint;
            use $crate::num_integer::Integer;

            let modulus: BigUint = <$field>::MODULUS.into();
            let modulus_minus_one = &modulus - 1u8;
            assert_eq!(BigUint::from(<$field>::MODULUS_MINUS_ONE_DIV_TWO), &modulus_minus_one / 2u32);
            assert_eq!(<$field>::MODULUS_BIT_SIZE as u64, modulus.bits());
            if let Some(SqrtPrecomputation::Case3Mod4 { modulus_plus_one_div_four }) = <$field>::SQRT_PRECOMP {
                // Handle the case where `(MODULUS + 1) / 4`
                // has fewer limbs than `MODULUS`.
                let check = ((&modulus + 1u8) / 4u8).to_u64_digits();
                let len = check.len();
                assert_eq!(&modulus_plus_one_div_four[..len], &check);
                assert!(modulus_plus_one_div_four[len..].iter().all(|l| *l == 0));
            }

            let mut two_adicity = 0;
            let mut trace = modulus_minus_one;
            while trace.is_even() {
                trace /= 2u8;
                two_adicity += 1;
            }
            assert_eq!(two_adicity, <$field>::TWO_ADICITY);
            assert_eq!(BigUint::from(<$field>::TRACE), trace);
            let trace_minus_one_div_two = (&trace - 1u8) / 2u8;
            assert_eq!(BigUint::from(<$field>::TRACE_MINUS_ONE_DIV_TWO), trace_minus_one_div_two);

            let two_adic_root_of_unity: BigUint = <$field>::TWO_ADIC_ROOT_OF_UNITY.into();
            let generator: BigUint = <$field>::GENERATOR.into_bigint().into();
            assert_eq!(two_adic_root_of_unity, generator.modpow(&trace, &modulus));
            match (<$field>::SMALL_SUBGROUP_BASE, <$field>::SMALL_SUBGROUP_BASE_ADICITY) {
                (Some(base), Some(adicity)) => {
                    let mut e = generator;
                    for _i in 0..adicity {
                        e = e.modpow(&base.into(), &modulus)
                    }
                },
                (None, None) => {},
                (_, _) => {
                    panic!("Should specify both `SMALL_SUBGROUP_BASE` and `SMALL_SUBGROUP_BASE_ADICITY`")
                },
            }
        }
    };
    ($field: ty; mont_prime_field) => {
        $crate::__test_field!($field; prime);

        #[test]
        pub fn test_montgomery_config() {
            use ark_ff::{FpConfig, BigInteger};
            use $crate::num_bigint::{BigUint, BigInt};
            use $crate::num_integer::Integer;
            use $crate::num_traits::{Signed, cast::ToPrimitive};

            let limbs = <$field as PrimeField>::BigInt::NUM_LIMBS;
            let modulus: BigUint = <$field>::MODULUS.into();
            let r = BigUint::from(2u8).modpow(&((limbs * 64) as u64).into(), &modulus);
            let r2 = (&r * &r) % &modulus;
            let inv = {
                // We compute this as follows.
                // First, MODULUS mod 2^64 is just the lower 64 bits of MODULUS.
                // Hence MODULUS mod 2^64 = MODULUS.0[0] mod 2^64.
                //
                // Next, computing the inverse mod 2^64 involves exponentiating by
                // the multiplicative group order, which is euler_totient(2^64) - 1.
                // Now, euler_totient(2^64) = 1 << 63, and so
                // euler_totient(2^64) - 1 = (1 << 63) - 1 = 1111111... (63 digits).
                // We compute this powering via standard square and multiply.
                let mut inv = 1u128;
                let two_to_64 = 1u128 << 64;
                for _ in 0..63 {
                    // Square
                    inv = inv.checked_mul(inv).unwrap() % two_to_64;
                    // Multiply
                    inv = inv.checked_mul(<$field>::MODULUS.0[0] as u128).unwrap() % &two_to_64;
                };
                let mut inv = inv as i128;
                let two_to_64 = two_to_64 as i128;
                inv = (-inv) % two_to_64;
                inv as u64
            };
            let group_order = 0b111111111111111111111111111111111111111111111111111111111111111u64;
            let group_order_lower = ((group_order << 32) >> 32) as u32; // clear the upper 32 bits
            let group_order_upper = ((group_order) >> 32) as u32; // drop the lower 32 bits
            let modulus_lower_limb = <$field>::MODULUS.0[0];
            let modulus_lower_limb_to2_32 = modulus_lower_limb.wrapping_pow(u32::MAX).wrapping_mul(modulus_lower_limb);
            let inv2 = modulus_lower_limb
                .wrapping_pow(group_order_lower)
                .wrapping_mul(modulus_lower_limb_to2_32.wrapping_pow(group_order_upper))
                .wrapping_neg();

            assert_eq!(r, <$field>::R.into());
            assert_eq!(r2, <$field>::R2.into());
            assert_eq!(inv, u64::from(<$field>::INV));
            assert_eq!(inv2, <$field>::INV);
        }
    }
}

#[macro_export]
macro_rules! test_field {
    ($mod_name:ident; $field:ty $(; $tail:tt)*) => {
        mod $mod_name {
            use super::*;
            use ark_ff::{
                fields::{FftField, Field, LegendreSymbol, PrimeField},
                Fp, MontBackend, MontConfig,
            };
            use ark_serialize::{buffer_bit_byte_size, Flags};
            use ark_std::{io::Cursor, rand::Rng, vec::*, test_rng, vec, Zero, One, UniformRand};
            const ITERATIONS: usize = 1000;

            $crate::__test_field!($field $(; $tail)*);
        }
    };

    ($iters:expr; $mod_name:ident; $field:ty $(; $tail:tt)*) => {
        mod $mod_name {
            use super::*;
            use ark_ff::{
                fields::{FftField, Field, LegendreSymbol, PrimeField},
                Fp, MontBackend, MontConfig,
            };
            use ark_serialize::{buffer_bit_byte_size, Flags};
            use ark_std::{io::Cursor, rand::Rng, vec::*, test_rng, vec, Zero, One, UniformRand};
            const ITERATIONS: usize = $iters;

            $crate::__test_field!($field $(; $tail)*);
        }
    };
}