ark_bls12_377/curves/g1.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
use ark_ec::{
bls12,
bls12::Bls12Config,
hashing::curve_maps::wb::{IsogenyMap, WBConfig},
models::{
short_weierstrass::{Affine as SWAffine, Projective as SWProjective, SWCurveConfig},
twisted_edwards::{
Affine as TEAffine, MontCurveConfig, Projective as TEProjective, TECurveConfig,
},
},
scalar_mul::glv::GLVConfig,
CurveConfig,
};
use ark_ff::{AdditiveGroup, BigInt, Field, MontFp, PrimeField, Zero};
use ark_std::{ops::Neg, One};
use super::g1_swu_iso::{SwuIsoConfig, ISOGENY_MAP_TO_G1};
use crate::{Fq, Fr};
pub type G1Affine = bls12::G1Affine<crate::Config>;
pub type G1Projective = bls12::G1Projective<crate::Config>;
#[derive(Clone, Default, PartialEq, Eq)]
pub struct Config;
impl CurveConfig for Config {
type BaseField = Fq;
type ScalarField = Fr;
/// COFACTOR = (x - 1)^2 / 3 = 30631250834960419227450344600217059328
const COFACTOR: &'static [u64] = &[0x0, 0x170b5d4430000000];
/// COFACTOR_INV = COFACTOR^{-1} mod r
/// = 5285428838741532253824584287042945485047145357130994810877
const COFACTOR_INV: Fr = MontFp!("5285428838741532253824584287042945485047145357130994810877");
}
impl SWCurveConfig for Config {
/// COEFF_A = 0
const COEFF_A: Fq = Fq::ZERO;
/// COEFF_B = 1
const COEFF_B: Fq = Fq::ONE;
/// AFFINE_GENERATOR_COEFFS = (G1_GENERATOR_X, G1_GENERATOR_Y)
const GENERATOR: G1SWAffine = G1SWAffine::new_unchecked(G1_GENERATOR_X, G1_GENERATOR_Y);
#[inline(always)]
fn mul_by_a(_: Self::BaseField) -> Self::BaseField {
Self::BaseField::zero()
}
#[inline]
fn mul_projective(p: &G1Projective, scalar: &[u64]) -> G1Projective {
let s = Self::ScalarField::from_sign_and_limbs(true, scalar);
GLVConfig::glv_mul_projective(*p, s)
}
#[inline]
fn clear_cofactor(p: &G1SWAffine) -> G1SWAffine {
// Using the effective cofactor.
//
// It is enough to multiply by (x - 1), instead of (x - 1)^2 / 3
let h_eff = x_minus_one().into_bigint();
<Config as SWCurveConfig>::mul_affine(p, h_eff.as_ref()).into()
}
}
impl GLVConfig for Config {
const ENDO_COEFFS: &'static[Self::BaseField] = &[
MontFp!("258664426012969093929703085429980814127835149614277183275038967946009968870203535512256352201271898244626862047231")
];
const LAMBDA: Self::ScalarField =
MontFp!("8444461749428370424248824938781546531284005582649182570233710176290576793600");
const SCALAR_DECOMP_COEFFS: [(bool, <Self::ScalarField as PrimeField>::BigInt); 4] = [
(true, BigInt!("91893752504881257701523279626832445441")),
(true, BigInt!("1")),
(false, BigInt!("1")),
(true, BigInt!("91893752504881257701523279626832445440")),
];
fn endomorphism(p: &SWProjective<Self>) -> SWProjective<Self> {
let mut res = (*p).clone();
res.x *= Self::ENDO_COEFFS[0];
res
}
fn endomorphism_affine(p: &SWAffine<Self>) -> SWAffine<Self> {
let mut res = (*p).clone();
res.x *= Self::ENDO_COEFFS[0];
res
}
}
fn x_minus_one() -> Fr {
const X: Fr = Fr::from_sign_and_limbs(!crate::Config::X_IS_NEGATIVE, crate::Config::X);
X - Fr::one()
}
pub type G1SWAffine = SWAffine<Config>;
pub type G1TEAffine = TEAffine<Config>;
pub type G1TEProjective = TEProjective<Config>;
/// Bls12_377::G1 also has a twisted Edwards form.
/// It can be obtained via the following script, implementing
/// 1. SW -> Montgomery -> TE1 transformation: <https://en.wikipedia.org/wiki/Montgomery_curve>
/// 2. TE1 -> TE2 normalization (enforcing `a = -1`)
/// ``` sage
/// # modulus
/// p = 0x1ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508c00000000001
/// Fp = Zmod(p)
///
/// #####################################################
/// # Weierstrass curve: y² = x³ + A * x + B
/// #####################################################
/// # curve y^2 = x^3 + 1
/// WA = Fp(0)
/// WB = Fp(1)
///
/// #####################################################
/// # Montgomery curve: By² = x³ + A * x² + x
/// #####################################################
/// # root for x^3 + 1 = 0
/// alpha = -1
/// # s = 1 / (sqrt(3alpha^2 + a))
/// s = 1/(Fp(3).sqrt())
///
/// # MA = 3 * alpha * s
/// MA = Fp(228097355113300204138531148905234651262148041026195375645000724271212049151994375092458297304264351187709081232384)
/// # MB = s
/// MB = Fp(10189023633222963290707194929886294091415157242906428298294512798502806398782149227503530278436336312243746741931)
///
/// # #####################################################
/// # # Twisted Edwards curve 1: a * x² + y² = 1 + d * x² * y²
/// # #####################################################
/// # We first convert to TE form obtaining a curve with a != -1, and then
/// # apply a transformation to obtain a TE curve with a = -1.
/// # a = (MA+2)/MB
/// TE1a = Fp(61134141799337779744243169579317764548490943457438569789767076791016838392692895365021181670618017873462480451583)
/// # b = (MA-2)/MB
/// TE1d = Fp(197530284213631314266409564115575768987902569297476090750117185875703629955647927409947706468955342250977841006588)
///
/// # #####################################################
/// # # Twisted Edwards curve 2: a * x² + y² = 1 + d * x² * y²
/// # #####################################################
/// # a = -1
/// TE2a = Fp(-1)
/// # b = -TE1d/TE1a
/// TE2d = Fp(122268283598675559488486339158635529096981886914877139579534153582033676785385790730042363341236035746924960903179)
/// ```
impl TECurveConfig for Config {
/// COEFF_A = -1
const COEFF_A: Fq = MontFp!("-1");
/// COEFF_D = 122268283598675559488486339158635529096981886914877139579534153582033676785385790730042363341236035746924960903179 mod q
const COEFF_D: Fq = MontFp!("122268283598675559488486339158635529096981886914877139579534153582033676785385790730042363341236035746924960903179");
/// AFFINE_GENERATOR_COEFFS = (GENERATOR_X, GENERATOR_Y)
const GENERATOR: G1TEAffine = G1TEAffine::new_unchecked(TE_GENERATOR_X, TE_GENERATOR_Y);
type MontCurveConfig = Config;
/// Multiplication by `a` is multiply by `-1`.
#[inline(always)]
fn mul_by_a(elem: Self::BaseField) -> Self::BaseField {
elem.neg()
}
}
// BLS12-377::G1 also has a Montgomery form.
// BLS12-377::G1 also has a twisted Edwards form.
// It can be obtained via the following script, implementing
// SW -> Montgomery transformation: <https://en.wikipedia.org/wiki/Montgomery_curve>
// ``` sage
// # modulus
// p=0x1ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508c00000000001
// Fp=Zmod(p)
//
// #####################################################
// # Weierstrass curve: y² = x³ + A * x + B
// #####################################################
// # curve y^2 = x^3 + 1
// WA=Fp(0)
// WB=Fp(1)
//
// #####################################################
// # Montgomery curve: By² = x³ + A * x² + x
// #####################################################
// # root for x^3 + 1 = 0
// alpha = -1
// # s = 1 / (sqrt(3alpha^2 + a))
// s = 1/(Fp(3).sqrt())
//
// # MA = 3 * alpha * s
// MA=Fp(228097355113300204138531148905234651262148041026195375645000724271212049151994375092458297304264351187709081232384)
// # MB = s
// MB=Fp(10189023633222963290707194929886294091415157242906428298294512798502806398782149227503530278436336312243746741931)
// ```
impl MontCurveConfig for Config {
/// COEFF_A = 228097355113300204138531148905234651262148041026195375645000724271212049151994375092458297304264351187709081232384
const COEFF_A: Fq = MontFp!("228097355113300204138531148905234651262148041026195375645000724271212049151994375092458297304264351187709081232384");
/// COEFF_B = 10189023633222963290707194929886294091415157242906428298294512798502806398782149227503530278436336312243746741931
const COEFF_B: Fq = MontFp!("10189023633222963290707194929886294091415157242906428298294512798502806398782149227503530278436336312243746741931");
type TECurveConfig = Config;
}
/// G1_GENERATOR_X =
/// 81937999373150964239938255573465948239988671502647976594219695644855304257327692006745978603320413799295628339695
pub const G1_GENERATOR_X: Fq = MontFp!("81937999373150964239938255573465948239988671502647976594219695644855304257327692006745978603320413799295628339695");
/// G1_GENERATOR_Y =
/// 241266749859715473739788878240585681733927191168601896383759122102112907357779751001206799952863815012735208165030
pub const G1_GENERATOR_Y: Fq = MontFp!("241266749859715473739788878240585681733927191168601896383759122102112907357779751001206799952863815012735208165030");
impl WBConfig for Config {
type IsogenousCurve = SwuIsoConfig;
const ISOGENY_MAP: IsogenyMap<'static, Self::IsogenousCurve, Self> = ISOGENY_MAP_TO_G1;
}
// The generator for twisted Edward form is the same SW generator converted into
// the normalized TE form (TE2).
//``` sage
// # following scripts in previous section
// #####################################################
// # Weierstrass curve generator
// #####################################################
// Wx = Fp(81937999373150964239938255573465948239988671502647976594219695644855304257327692006745978603320413799295628339695)
// Wy = Fp(241266749859715473739788878240585681733927191168601896383759122102112907357779751001206799952863815012735208165030)
//
// assert(Wy^2 - Wx^3 - WA * Wx - WB == 0)
//
// #####################################################
// # Montgomery curve generator
// #####################################################
// # x = s * (x - alpha)
// Mx = Fp(251803586774461569862800610331871502335378228972505599912537082323947581271784390797244487924068052270360793200630)
// # y = s * y
// My = Fp(77739247071951651095607889637653357561348174979132042929587539214321586851215673796661346812932566642719051699820)
//
// assert(MB * My^2 == Mx^3+ MA * Mx^2 + Mx)
//
// # #####################################################
// # # Twisted Edwards curve 1 generator
// # #####################################################
// # x = Mx/My
// TE1x = Fp(82241236807150726090333472814441006963902378430536027612759193445733851062772474760677400112551677454953925168208)
// # y = (Mx - 1)/(Mx+1)
// TE1y = Fp(6177051365529633638563236407038680211609544222665285371549726196884440490905471891908272386851767077598415378235)
//
// assert( TE1a * TE1x^2 + TE1y^2 == 1 + TE1d * TE1x^2 * TE1y^2 )
//
//
// # #####################################################
// # # Twisted Edwards curve 2 generator
// # #####################################################
// beta = (-TE1a).sqrt()
// # x = TE1x * sqrt(-TE1a)
// TE2x = Fp(71222569531709137229370268896323705690285216175189308202338047559628438110820800641278662592954630774340654489393)
// # y = TE1y
// TE2y = Fp(6177051365529633638563236407038680211609544222665285371549726196884440490905471891908272386851767077598415378235)
//
// assert( TE2a * TE2x^2 + TE2y^2 == 1 + TE2d * TE2x^2 * TE2y^2 )
// ```
/// TE_GENERATOR_X =
/// 71222569531709137229370268896323705690285216175189308202338047559628438110820800641278662592954630774340654489393
pub const TE_GENERATOR_X: Fq = MontFp!("71222569531709137229370268896323705690285216175189308202338047559628438110820800641278662592954630774340654489393");
/// TE_GENERATOR_Y =
/// 6177051365529633638563236407038680211609544222665285371549726196884440490905471891908272386851767077598415378235
pub const TE_GENERATOR_Y: Fq = MontFp!("6177051365529633638563236407038680211609544222665285371549726196884440490905471891908272386851767077598415378235");
#[cfg(test)]
mod test {
use super::*;
use crate::g1;
use ark_std::{rand::Rng, UniformRand};
fn sample_unchecked() -> SWAffine<g1::Config> {
let mut rng = ark_std::test_rng();
loop {
let x = Fq::rand(&mut rng);
let greatest = rng.gen();
if let Some(p) = SWAffine::get_point_from_x_unchecked(x, greatest) {
return p;
}
}
}
#[test]
fn test_cofactor_clearing() {
const SAMPLES: usize = 100;
for _ in 0..SAMPLES {
let p: SWAffine<g1::Config> = sample_unchecked();
let p = <Config as SWCurveConfig>::clear_cofactor(&p);
assert!(p.is_on_curve());
assert!(p.is_in_correct_subgroup_assuming_on_curve());
}
}
}