ark_bls12_377/curves/
g2.rsuse ark_ec::{
bls12,
bls12::Bls12Config,
hashing::curve_maps::wb::{IsogenyMap, WBConfig},
scalar_mul::glv::GLVConfig,
short_weierstrass::{Affine, Projective, SWCurveConfig},
AffineRepr, CurveConfig, CurveGroup, PrimeGroup,
};
use ark_ff::{AdditiveGroup, BigInt, Field, MontFp, PrimeField, Zero};
use ark_std::ops::Neg;
use crate::*;
use super::g2_swu_iso::{SwuIsoConfig, ISOGENY_MAP_TO_G2};
pub type G2Affine = bls12::G2Affine<crate::Config>;
pub type G2Projective = bls12::G2Projective<crate::Config>;
#[derive(Clone, Default, PartialEq, Eq)]
pub struct Config;
impl CurveConfig for Config {
type BaseField = Fq2;
type ScalarField = Fr;
#[rustfmt::skip]
const COFACTOR: &'static [u64] = &[
0x0000000000000001,
0x452217cc90000000,
0xa0f3622fba094800,
0xd693e8c36676bd09,
0x8c505634fae2e189,
0xfbb36b00e1dcc40c,
0xddd88d99a6f6a829,
0x26ba558ae9562a,
];
const COFACTOR_INV: Fr =
MontFp!("6764900296503390671038341982857278410319949526107311149686707033187604810669");
}
impl SWCurveConfig for Config {
const COEFF_A: Fq2 = Fq2::new(g1::Config::COEFF_A, g1::Config::COEFF_A);
const COEFF_B: Fq2 = Fq2::new(
Fq::ZERO,
MontFp!("155198655607781456406391640216936120121836107652948796323930557600032281009004493664981332883744016074664192874906"),
);
const GENERATOR: G2Affine = G2Affine::new_unchecked(G2_GENERATOR_X, G2_GENERATOR_Y);
#[inline(always)]
fn mul_by_a(_: Self::BaseField) -> Self::BaseField {
Self::BaseField::zero()
}
#[inline]
fn clear_cofactor(p: &G2Affine) -> G2Affine {
let x: &'static [u64] = crate::Config::X;
let p_projective = p.into_group();
let x_p = Config::mul_affine(p, x);
let psi_p = p_power_endomorphism(p);
let mut psi2_p2 = double_p_power_endomorphism(&p_projective.double());
let mut tmp = x_p;
tmp += &psi_p;
let mut tmp2: Projective<Config> = tmp;
tmp2 = tmp2.mul_bigint(x);
psi2_p2 += tmp2;
psi2_p2 -= x_p;
psi2_p2 += &-psi_p;
(psi2_p2 - p_projective).into_affine()
}
}
impl GLVConfig for Config {
const ENDO_COEFFS: &'static[Self::BaseField] = &[
Fq2::new(
MontFp!("258664426012969093929703085429980814127835149614277183275038967946009968870203535512256352201271898244626862047231"),
Fq::ZERO
)
];
const LAMBDA: Self::ScalarField = MontFp!("91893752504881257701523279626832445440");
const SCALAR_DECOMP_COEFFS: [(bool, <Self::ScalarField as PrimeField>::BigInt); 4] = [
(false, BigInt!("91893752504881257701523279626832445440")),
(true, BigInt!("1")),
(false, BigInt!("1")),
(false, BigInt!("91893752504881257701523279626832445441")),
];
fn endomorphism(p: &Projective<Self>) -> Projective<Self> {
let mut res = (*p).clone();
res.x *= Self::ENDO_COEFFS[0];
res
}
fn endomorphism_affine(p: &Affine<Self>) -> Affine<Self> {
let mut res = (*p).clone();
res.x *= Self::ENDO_COEFFS[0];
res
}
}
pub const G2_GENERATOR_X: Fq2 = Fq2::new(G2_GENERATOR_X_C0, G2_GENERATOR_X_C1);
pub const G2_GENERATOR_Y: Fq2 = Fq2::new(G2_GENERATOR_Y_C0, G2_GENERATOR_Y_C1);
pub const G2_GENERATOR_X_C0: Fq = MontFp!("233578398248691099356572568220835526895379068987715365179118596935057653620464273615301663571204657964920925606294");
pub const G2_GENERATOR_X_C1: Fq = MontFp!("140913150380207355837477652521042157274541796891053068589147167627541651775299824604154852141315666357241556069118");
pub const G2_GENERATOR_Y_C0: Fq = MontFp!("63160294768292073209381361943935198908131692476676907196754037919244929611450776219210369229519898517858833747423");
pub const G2_GENERATOR_Y_C1: Fq = MontFp!("149157405641012693445398062341192467754805999074082136895788947234480009303640899064710353187729182149407503257491");
const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = Fq2::new(
MontFp!(
"80949648264912719408558363140637477264845294720710499478137287262712535938301461879813459410946"
),
Fq::ZERO,
);
const P_POWER_ENDOMORPHISM_COEFF_1: Fq2 = Fq2::new(
MontFp!(
"216465761340224619389371505802605247630151569547285782856803747159100223055385581585702401816380679166954762214499"),
Fq::ZERO,
);
const DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0: Fq2 = Fq2::new(
MontFp!("80949648264912719408558363140637477264845294720710499478137287262712535938301461879813459410945"),
Fq::ZERO
);
fn p_power_endomorphism(p: &Affine<Config>) -> Affine<Config> {
let mut res = *p;
res.x.frobenius_map_in_place(1);
res.y.frobenius_map_in_place(1);
res.x *= P_POWER_ENDOMORPHISM_COEFF_0;
res.y *= P_POWER_ENDOMORPHISM_COEFF_1;
res
}
fn double_p_power_endomorphism(p: &Projective<Config>) -> Projective<Config> {
let mut res = *p;
res.x *= DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0;
res.y = res.y.neg();
res
}
impl WBConfig for Config {
type IsogenousCurve = SwuIsoConfig;
const ISOGENY_MAP: IsogenyMap<'static, Self::IsogenousCurve, Self> = ISOGENY_MAP_TO_G2;
}
#[cfg(test)]
mod test {
use super::*;
use ark_std::{rand::Rng, UniformRand};
fn sample_unchecked() -> Affine<g2::Config> {
let mut rng = ark_std::test_rng();
loop {
let x1 = Fq::rand(&mut rng);
let x2 = Fq::rand(&mut rng);
let greatest = rng.gen();
let x = Fq2::new(x1, x2);
if let Some(p) = Affine::get_point_from_x_unchecked(x, greatest) {
return p;
}
}
}
#[test]
fn test_psi_2() {
let p = sample_unchecked();
let psi_p = p_power_endomorphism(&p);
let psi2_p_composed = p_power_endomorphism(&psi_p);
let psi2_p_optimised = double_p_power_endomorphism(&p.into());
assert_eq!(psi2_p_composed, psi2_p_optimised);
}
#[test]
fn test_cofactor_clearing() {
let h_eff = &[
0x1e34800000000000,
0xcf664765b0000003,
0x8e8e73ad8a538800,
0x78ba279637388559,
0xb85860aaaad29276,
0xf7ee7c4b03103b45,
0x8f6ade35a5c7d769,
0xa951764c46f4edd2,
0x53648d3d9502abfb,
0x1f60243677e306,
];
const SAMPLES: usize = 10;
for _ in 0..SAMPLES {
let p: Affine<g2::Config> = sample_unchecked();
let optimised = p.clear_cofactor();
let naive = g2::Config::mul_affine(&p, h_eff);
assert_eq!(optimised.into_group(), naive);
assert!(optimised.is_on_curve());
assert!(optimised.is_in_correct_subgroup_assuming_on_curve());
}
}
}