ark_bls12_381/curves/
g2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
use ark_std::ops::Neg;

use ark_ec::{
    bls12,
    bls12::Bls12Config,
    hashing::curve_maps::wb::{IsogenyMap, WBConfig},
    models::CurveConfig,
    scalar_mul::glv::GLVConfig,
    short_weierstrass::{Affine, Projective, SWCurveConfig},
    AffineRepr, CurveGroup, PrimeGroup,
};
use ark_ff::{AdditiveGroup, BigInt, Field, MontFp, PrimeField, Zero};
use ark_serialize::{Compress, SerializationError};

use super::{
    g2_swu_iso,
    util::{serialize_fq, EncodingFlags, G2_SERIALIZED_SIZE},
};
use crate::{
    util::{read_g2_compressed, read_g2_uncompressed},
    *,
};

pub type G2Affine = bls12::G2Affine<crate::Config>;
pub type G2Projective = bls12::G2Projective<crate::Config>;

#[derive(Clone, Default, PartialEq, Eq)]
pub struct Config;

impl CurveConfig for Config {
    type BaseField = Fq2;
    type ScalarField = Fr;

    /// COFACTOR = (x^8 - 4 x^7 + 5 x^6) - (4 x^4 + 6 x^3 - 4 x^2 - 4 x + 13) //
    /// 9
    /// = 305502333931268344200999753193121504214466019254188142667664032982267604182971884026507427359259977847832272839041616661285803823378372096355777062779109
    #[rustfmt::skip]
    const COFACTOR: &'static [u64] = &[
        0xcf1c38e31c7238e5,
        0x1616ec6e786f0c70,
        0x21537e293a6691ae,
        0xa628f1cb4d9e82ef,
        0xa68a205b2e5a7ddf,
        0xcd91de4547085aba,
        0x91d50792876a202,
        0x5d543a95414e7f1,
    ];

    /// COFACTOR_INV = COFACTOR^{-1} mod r
    /// 26652489039290660355457965112010883481355318854675681319708643586776743290055
    const COFACTOR_INV: Fr =
        MontFp!("26652489039290660355457965112010883481355318854675681319708643586776743290055");
}

impl SWCurveConfig for Config {
    /// COEFF_A = [0, 0]
    const COEFF_A: Fq2 = Fq2::new(g1::Config::COEFF_A, g1::Config::COEFF_A);

    /// COEFF_B = [4, 4]
    const COEFF_B: Fq2 = Fq2::new(g1::Config::COEFF_B, g1::Config::COEFF_B);

    /// AFFINE_GENERATOR_COEFFS = (G2_GENERATOR_X, G2_GENERATOR_Y)
    const GENERATOR: G2Affine = G2Affine::new_unchecked(G2_GENERATOR_X, G2_GENERATOR_Y);

    #[inline(always)]
    fn mul_by_a(_: Self::BaseField) -> Self::BaseField {
        Self::BaseField::zero()
    }

    fn is_in_correct_subgroup_assuming_on_curve(point: &G2Affine) -> bool {
        // Algorithm from Section 4 of https://eprint.iacr.org/2021/1130.
        //
        // Checks that [p]P = [X]P

        let mut x_times_point = point.mul_bigint(crate::Config::X);
        if crate::Config::X_IS_NEGATIVE {
            x_times_point = -x_times_point;
        }

        let p_times_point = p_power_endomorphism(point);

        x_times_point.eq(&p_times_point)
    }

    #[inline]
    fn clear_cofactor(p: &G2Affine) -> G2Affine {
        // Based on Section 4.1 of https://eprint.iacr.org/2017/419.pdf
        // [h(ψ)]P = [x^2 − x − 1]P + [x − 1]ψ(P) + (ψ^2)(2P)

        // x = -15132376222941642752
        // When multiplying, use -c1 instead, and then negate the result. That's much
        // more efficient, since the scalar -c1 has less limbs and a much lower Hamming
        // weight.
        let x: &'static [u64] = crate::Config::X;
        let p_projective = p.into_group();

        // [x]P
        let x_p = Config::mul_affine(p, &x).neg();
        // ψ(P)
        let psi_p = p_power_endomorphism(&p);
        // (ψ^2)(2P)
        let mut psi2_p2 = double_p_power_endomorphism(&p_projective.double());

        // tmp = [x]P + ψ(P)
        let mut tmp = x_p.clone();
        tmp += &psi_p;

        // tmp2 = [x^2]P + [x]ψ(P)
        let mut tmp2: Projective<Config> = tmp;
        tmp2 = tmp2.mul_bigint(x).neg();

        // add up all the terms
        psi2_p2 += tmp2;
        psi2_p2 -= x_p;
        psi2_p2 += &-psi_p;
        (psi2_p2 - p_projective).into_affine()
    }

    fn deserialize_with_mode<R: ark_serialize::Read>(
        mut reader: R,
        compress: ark_serialize::Compress,
        validate: ark_serialize::Validate,
    ) -> Result<Affine<Self>, ark_serialize::SerializationError> {
        let p = if compress == ark_serialize::Compress::Yes {
            read_g2_compressed(&mut reader)?
        } else {
            read_g2_uncompressed(&mut reader)?
        };

        if validate == ark_serialize::Validate::Yes && !p.is_in_correct_subgroup_assuming_on_curve()
        {
            return Err(SerializationError::InvalidData);
        }
        Ok(p)
    }

    fn serialize_with_mode<W: ark_serialize::Write>(
        item: &Affine<Self>,
        mut writer: W,
        compress: ark_serialize::Compress,
    ) -> Result<(), SerializationError> {
        let encoding = EncodingFlags {
            is_compressed: compress == ark_serialize::Compress::Yes,
            is_infinity: item.is_zero(),
            is_lexographically_largest: item.y > -item.y,
        };
        let mut p = *item;
        if encoding.is_infinity {
            p = G2Affine::zero();
        }

        let mut x_bytes = [0u8; G2_SERIALIZED_SIZE];
        let c1_bytes = serialize_fq(p.x.c1);
        let c0_bytes = serialize_fq(p.x.c0);
        x_bytes[0..48].copy_from_slice(&c1_bytes[..]);
        x_bytes[48..96].copy_from_slice(&c0_bytes[..]);
        if encoding.is_compressed {
            let mut bytes: [u8; G2_SERIALIZED_SIZE] = x_bytes;

            encoding.encode_flags(&mut bytes);
            writer.write_all(&bytes)?;
        } else {
            let mut bytes = [0u8; 2 * G2_SERIALIZED_SIZE];

            let mut y_bytes = [0u8; G2_SERIALIZED_SIZE];
            let c1_bytes = serialize_fq(p.y.c1);
            let c0_bytes = serialize_fq(p.y.c0);
            y_bytes[0..48].copy_from_slice(&c1_bytes[..]);
            y_bytes[48..96].copy_from_slice(&c0_bytes[..]);
            bytes[0..G2_SERIALIZED_SIZE].copy_from_slice(&x_bytes);
            bytes[G2_SERIALIZED_SIZE..].copy_from_slice(&y_bytes);

            encoding.encode_flags(&mut bytes);
            writer.write_all(&bytes)?;
        };

        Ok(())
    }

    fn serialized_size(compress: ark_serialize::Compress) -> usize {
        if compress == Compress::Yes {
            G2_SERIALIZED_SIZE
        } else {
            2 * G2_SERIALIZED_SIZE
        }
    }
}

impl GLVConfig for Config {
    const ENDO_COEFFS: &'static[Self::BaseField] = &[
        Fq2::new(
            MontFp!("793479390729215512621379701633421447060886740281060493010456487427281649075476305620758731620350"),
            Fq::ZERO
        )
    ];

    const LAMBDA: Self::ScalarField = MontFp!("228988810152649578064853576960394133503");

    const SCALAR_DECOMP_COEFFS: [(bool, <Self::ScalarField as PrimeField>::BigInt); 4] = [
        (false, BigInt!("228988810152649578064853576960394133503")),
        (true, BigInt!("1")),
        (false, BigInt!("1")),
        (false, BigInt!("228988810152649578064853576960394133504")),
    ];

    fn endomorphism(p: &Projective<Self>) -> Projective<Self> {
        let mut res = (*p).clone();
        res.x *= Self::ENDO_COEFFS[0];
        res
    }

    fn endomorphism_affine(p: &Affine<Self>) -> Affine<Self> {
        let mut res = (*p).clone();
        res.x *= Self::ENDO_COEFFS[0];
        res
    }
}

pub const G2_GENERATOR_X: Fq2 = Fq2::new(G2_GENERATOR_X_C0, G2_GENERATOR_X_C1);
pub const G2_GENERATOR_Y: Fq2 = Fq2::new(G2_GENERATOR_Y_C0, G2_GENERATOR_Y_C1);

/// G2_GENERATOR_X_C0 =
/// 352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160
pub const G2_GENERATOR_X_C0: Fq = MontFp!("352701069587466618187139116011060144890029952792775240219908644239793785735715026873347600343865175952761926303160");

/// G2_GENERATOR_X_C1 =
/// 3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758
pub const G2_GENERATOR_X_C1: Fq = MontFp!("3059144344244213709971259814753781636986470325476647558659373206291635324768958432433509563104347017837885763365758");

/// G2_GENERATOR_Y_C0 =
/// 1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905
pub const G2_GENERATOR_Y_C0: Fq = MontFp!("1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905");

/// G2_GENERATOR_Y_C1 =
/// 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582
pub const G2_GENERATOR_Y_C1: Fq = MontFp!("927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582");

// PSI_X = 1/(u+1)^((p-1)/3)
const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = Fq2::new(
    Fq::ZERO,
    MontFp!(
                "4002409555221667392624310435006688643935503118305586438271171395842971157480381377015405980053539358417135540939437"
    )
);

// PSI_Y = 1/(u+1)^((p-1)/2)
const P_POWER_ENDOMORPHISM_COEFF_1: Fq2 = Fq2::new(
    MontFp!(
                "2973677408986561043442465346520108879172042883009249989176415018091420807192182638567116318576472649347015917690530"),
    MontFp!(
       "1028732146235106349975324479215795277384839936929757896155643118032610843298655225875571310552543014690878354869257")
);

// PSI_2_X = (u+1)^((1-p^2)/3)
const DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0: Fq2 = Fq2::new(
    MontFp!("4002409555221667392624310435006688643935503118305586438271171395842971157480381377015405980053539358417135540939436"),
    Fq::ZERO
);

/// psi(P) is the untwist-Frobenius-twist endomorphism on E'(Fq2)
fn p_power_endomorphism(p: &Affine<Config>) -> Affine<Config> {
    // The p-power endomorphism for G2 is defined as follows:
    // 1. Note that G2 is defined on curve E': y^2 = x^3 + 4(u+1).
    //    To map a point (x, y) in E' to (s, t) in E,
    //    set s = x / ((u+1) ^ (1/3)), t = y / ((u+1) ^ (1/2)),
    //    because E: y^2 = x^3 + 4.
    // 2. Apply the Frobenius endomorphism (s, t) => (s', t'),
    //    another point on curve E, where s' = s^p, t' = t^p.
    // 3. Map the point from E back to E'; that is,
    //    set x' = s' * ((u+1) ^ (1/3)), y' = t' * ((u+1) ^ (1/2)).
    //
    // To sum up, it maps
    // (x,y) -> (x^p / ((u+1)^((p-1)/3)), y^p / ((u+1)^((p-1)/2)))
    // as implemented in the code as follows.

    let mut res = *p;
    res.x.frobenius_map_in_place(1);
    res.y.frobenius_map_in_place(1);

    let tmp_x = res.x.clone();
    res.x.c0 = -P_POWER_ENDOMORPHISM_COEFF_0.c1 * &tmp_x.c1;
    res.x.c1 = P_POWER_ENDOMORPHISM_COEFF_0.c1 * &tmp_x.c0;
    res.y *= P_POWER_ENDOMORPHISM_COEFF_1;

    res
}

/// For a p-power endomorphism psi(P), compute psi(psi(P))
fn double_p_power_endomorphism(p: &Projective<Config>) -> Projective<Config> {
    let mut res = *p;

    res.x *= DOUBLE_P_POWER_ENDOMORPHISM_COEFF_0;
    res.y = res.y.neg();

    res
}

// Parameters from the [IETF draft v16, section E.3](https://www.ietf.org/archive/id/draft-irtf-cfrg-hash-to-curve-16.html#name-3-isogeny-map-for-bls12-381).
impl WBConfig for Config {
    type IsogenousCurve = g2_swu_iso::SwuIsoConfig;

    const ISOGENY_MAP: IsogenyMap<'static, Self::IsogenousCurve, Self> =
        g2_swu_iso::ISOGENY_MAP_TO_G2;
}

#[cfg(test)]
mod test {

    use super::*;
    use ark_std::{rand::Rng, UniformRand};

    fn sample_unchecked() -> Affine<g2::Config> {
        let mut rng = ark_std::test_rng();
        loop {
            let x1 = Fq::rand(&mut rng);
            let x2 = Fq::rand(&mut rng);
            let greatest = rng.gen();
            let x = Fq2::new(x1, x2);

            if let Some(p) = Affine::get_point_from_x_unchecked(x, greatest) {
                return p;
            }
        }
    }

    #[test]
    fn test_psi_2() {
        let p = sample_unchecked();
        let psi_p = p_power_endomorphism(&p);
        let psi2_p_composed = p_power_endomorphism(&psi_p);
        let psi2_p_optimised = double_p_power_endomorphism(&p.into());

        assert_eq!(psi2_p_composed, psi2_p_optimised);
    }

    #[test]
    fn test_cofactor_clearing() {
        // multiplying by h_eff and clearing the cofactor by the efficient
        // endomorphism-based method should yield the same result.
        let h_eff: &'static [u64] = &[
            0xe8020005aaa95551,
            0x59894c0adebbf6b4,
            0xe954cbc06689f6a3,
            0x2ec0ec69d7477c1a,
            0x6d82bf015d1212b0,
            0x329c2f178731db95,
            0x9986ff031508ffe1,
            0x88e2a8e9145ad768,
            0x584c6a0ea91b3528,
            0xbc69f08f2ee75b3,
        ];

        const SAMPLES: usize = 10;
        for _ in 0..SAMPLES {
            let p: Affine<g2::Config> = sample_unchecked();
            let optimised = p.clear_cofactor();
            let naive = g2::Config::mul_affine(&p, h_eff);
            assert_eq!(optimised.into_group(), naive);
            assert!(optimised.is_on_curve());
            assert!(optimised.is_in_correct_subgroup_assuming_on_curve());
        }
    }
}