Struct ark_bn254::FrParameters [−][src]
pub struct FrParameters;
Trait Implementations
type BigInt = BigInteger
Let N
be the size of the multiplicative group defined by the field.
Then TWO_ADICITY
is the two-adicity of N
, i.e. the integer s
such that N = 2^s * t
for some odd integer t
. Read more
2^s root of unity computed by GENERATOR^t
An integer b
such that there exists a multiplicative subgroup
of size b^k
for some integer k
. Read more
The integer k
such that there exists a multiplicative subgroup
of size Self::SMALL_SUBGROUP_BASE^k
. Read more
GENERATOR^((MODULUS-1) / (2^s * SMALL_SUBGROUP_BASE^SMALL_SUBGROUP_BASE_ADICITY)) Used for mixed-radix FFT. Read more
MODULUS = 21888242871839275222246405745257275088548364400416034343698204186575808495617
R = pow(2, 320) % MODULUS = 6350874878119819312338956282401532410528162663560392320966563075034087161851
R2 = R * R % MODULUS = 944936681149208446651664254269745548490766851729442924617792859073125903783
GENERATOR = 5
(MODULUS - 1)/2 = 10944121435919637611123202872628637544274182200208017171849102093287904247808
T = (MODULUS - 1) / 2^s = 81540058820840996586704275553141814055101440848469862132140264610111
(T - 1) / 2 = 40770029410420498293352137776570907027550720424234931066070132305055
The number of bits needed to represent the Self::MODULUS
.
The number of bits that can be reliably stored.
(Should equal SELF::MODULUS_BITS - 1
) Read more
The number of bits that must be shaved from the beginning of the representation when randomly sampling. Read more