1use ark_ec::AffineRepr;
2use ark_ec::{
3 models::{short_weierstrass::SWCurveConfig, CurveConfig},
4 scalar_mul::glv::GLVConfig,
5 short_weierstrass::{Affine, Projective},
6};
7use ark_ff::{AdditiveGroup, BigInt, Field, MontFp, PrimeField, Zero};
8
9use crate::{Fq, Fq2, Fr};
10
11pub type G2Affine = Affine<Config>;
12
13#[derive(Clone, Default, PartialEq, Eq)]
14pub struct Config;
15
16impl CurveConfig for Config {
17 type BaseField = Fq2;
18 type ScalarField = Fr;
19
20 #[rustfmt::skip]
23 const COFACTOR: &'static [u64] = &[
24 0x345f2299c0f9fa8d,
25 0x06ceecda572a2489,
26 0xb85045b68181585e,
27 0x30644e72e131a029,
28 ];
29
30 const COFACTOR_INV: Fr =
32 MontFp!("10944121435919637613327163357776759465618812564592884533313067514031822496649");
33}
34
35impl SWCurveConfig for Config {
36 const COEFF_A: Fq2 = Fq2::ZERO;
38
39 const COEFF_B: Fq2 = Fq2::new(
42 MontFp!("19485874751759354771024239261021720505790618469301721065564631296452457478373"),
43 MontFp!("266929791119991161246907387137283842545076965332900288569378510910307636690"),
44 );
45
46 const GENERATOR: G2Affine = G2Affine::new_unchecked(G2_GENERATOR_X, G2_GENERATOR_Y);
48
49 #[inline(always)]
50 fn mul_by_a(_: Self::BaseField) -> Self::BaseField {
51 Self::BaseField::zero()
52 }
53
54 fn is_in_correct_subgroup_assuming_on_curve(point: &G2Affine) -> bool {
55 let x_times_point = point.mul_bigint(SIX_X_SQUARED);
60 let p_times_point = p_power_endomorphism(point);
61 x_times_point.eq(&p_times_point)
62 }
63}
64
65impl GLVConfig for Config {
66 const ENDO_COEFFS: &'static [Self::BaseField] = &[Fq2::new(
67 MontFp!("21888242871839275220042445260109153167277707414472061641714758635765020556616"),
68 Fq::ZERO,
69 )];
70
71 const LAMBDA: Self::ScalarField =
72 MontFp!("4407920970296243842393367215006156084916469457145843978461");
73
74 const SCALAR_DECOMP_COEFFS: [(bool, <Self::ScalarField as PrimeField>::BigInt); 4] = [
75 (false, BigInt!("147946756881789319010696353538189108491")),
76 (false, BigInt!("9931322734385697763")),
77 (true, BigInt!("9931322734385697763")),
78 (false, BigInt!("147946756881789319000765030803803410728")),
79 ];
80
81 fn endomorphism(p: &Projective<Self>) -> Projective<Self> {
82 let mut res = (*p).clone();
83 res.x *= Self::ENDO_COEFFS[0];
84 res
85 }
86
87 fn endomorphism_affine(p: &Affine<Self>) -> Affine<Self> {
88 let mut res = (*p).clone();
89 res.x *= Self::ENDO_COEFFS[0];
90 res
91 }
92}
93
94pub const G2_GENERATOR_X: Fq2 = Fq2::new(G2_GENERATOR_X_C0, G2_GENERATOR_X_C1);
95pub const G2_GENERATOR_Y: Fq2 = Fq2::new(G2_GENERATOR_Y_C0, G2_GENERATOR_Y_C1);
96
97pub const G2_GENERATOR_X_C0: Fq =
100 MontFp!("10857046999023057135944570762232829481370756359578518086990519993285655852781");
101
102pub const G2_GENERATOR_X_C1: Fq =
105 MontFp!("11559732032986387107991004021392285783925812861821192530917403151452391805634");
106
107pub const G2_GENERATOR_Y_C0: Fq =
110 MontFp!("8495653923123431417604973247489272438418190587263600148770280649306958101930");
111
112pub const G2_GENERATOR_Y_C1: Fq =
115 MontFp!("4082367875863433681332203403145435568316851327593401208105741076214120093531");
116
117const P_POWER_ENDOMORPHISM_COEFF_0: Fq2 = Fq2::new(
119 MontFp!("21575463638280843010398324269430826099269044274347216827212613867836435027261"),
120 MontFp!("10307601595873709700152284273816112264069230130616436755625194854815875713954"),
121);
122
123const P_POWER_ENDOMORPHISM_COEFF_1: Fq2 = Fq2::new(
125 MontFp!("2821565182194536844548159561693502659359617185244120367078079554186484126554"),
126 MontFp!("3505843767911556378687030309984248845540243509899259641013678093033130930403"),
127);
128
129const SIX_X_SQUARED: [u64; 2] = [17887900258952609094, 8020209761171036667];
131
132fn p_power_endomorphism(p: &Affine<Config>) -> Affine<Config> {
134 let mut res = *p;
137 res.x.frobenius_map_in_place(1);
138 res.y.frobenius_map_in_place(1);
139
140 res.x *= P_POWER_ENDOMORPHISM_COEFF_0;
141 res.y *= P_POWER_ENDOMORPHISM_COEFF_1;
142
143 res
144}
145
146#[cfg(test)]
147mod test {
148
149 use super::*;
150 use crate::g2;
151 use ark_std::{rand::Rng, UniformRand};
152
153 fn sample_unchecked() -> Affine<g2::Config> {
154 let mut rng = ark_std::test_rng();
155 loop {
156 let x1 = Fq::rand(&mut rng);
157 let x2 = Fq::rand(&mut rng);
158 let greatest = rng.gen();
159 let x = Fq2::new(x1, x2);
160
161 if let Some(p) = Affine::get_point_from_x_unchecked(x, greatest) {
162 return p;
163 }
164 }
165 }
166
167 fn naive_is_in_subgroup_assuming_on_curve(p: &Affine<g2::Config>) -> bool {
168 <g2::Config as SWCurveConfig>::mul_affine(
169 p,
170 <g2::Config as CurveConfig>::ScalarField::characteristic(),
171 )
172 .is_zero()
173 }
174
175 #[test]
176 fn test_is_in_subgroup_assuming_on_curve() {
177 const SAMPLES: usize = 100;
178 for _ in 0..SAMPLES {
179 let p: Affine<g2::Config> = sample_unchecked();
180 assert!(p.is_on_curve());
181
182 assert_eq!(
183 naive_is_in_subgroup_assuming_on_curve(&p),
184 p.is_in_correct_subgroup_assuming_on_curve()
185 );
186
187 let cleared = p.clear_cofactor();
188 assert!(cleared.is_in_correct_subgroup_assuming_on_curve());
189 }
190 }
191}