1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
use ark_ff::PrimeField;
use ark_groth16::r1cs_to_qap::{evaluate_constraint, LibsnarkReduction, R1CSToQAP};
use ark_poly::EvaluationDomain;
use ark_relations::r1cs::{ConstraintMatrices, ConstraintSystemRef, SynthesisError};
use ark_std::{cfg_into_iter, cfg_iter, cfg_iter_mut, vec};

/// Implements the witness map used by snarkjs. The arkworks witness map calculates the
/// coefficients of H through computing (AB-C)/Z in the evaluation domain and going back to the
/// coefficients domain. snarkjs instead precomputes the Lagrange form of the powers of tau bases
/// in a domain twice as large and the witness map is computed as the odd coefficients of (AB-C)
/// in that domain. This serves as HZ when computing the C proof element.
pub struct CircomReduction;

impl R1CSToQAP for CircomReduction {
    #[allow(clippy::type_complexity)]
    fn instance_map_with_evaluation<F: PrimeField, D: EvaluationDomain<F>>(
        cs: ConstraintSystemRef<F>,
        t: &F,
    ) -> Result<(Vec<F>, Vec<F>, Vec<F>, F, usize, usize), SynthesisError> {
        LibsnarkReduction::instance_map_with_evaluation::<F, D>(cs, t)
    }

    fn witness_map_from_matrices<F: PrimeField, D: EvaluationDomain<F>>(
        matrices: &ConstraintMatrices<F>,
        num_inputs: usize,
        num_constraints: usize,
        full_assignment: &[F],
    ) -> Result<Vec<F>, SynthesisError> {
        let zero = F::zero();
        let domain =
            D::new(num_constraints + num_inputs).ok_or(SynthesisError::PolynomialDegreeTooLarge)?;
        let domain_size = domain.size();

        let mut a = vec![zero; domain_size];
        let mut b = vec![zero; domain_size];

        cfg_iter_mut!(a[..num_constraints])
            .zip(cfg_iter_mut!(b[..num_constraints]))
            .zip(cfg_iter!(&matrices.a))
            .zip(cfg_iter!(&matrices.b))
            .for_each(|(((a, b), at_i), bt_i)| {
                *a = evaluate_constraint(at_i, full_assignment);
                *b = evaluate_constraint(bt_i, full_assignment);
            });

        {
            let start = num_constraints;
            let end = start + num_inputs;
            a[start..end].clone_from_slice(&full_assignment[..num_inputs]);
        }

        let mut c = vec![zero; domain_size];
        cfg_iter_mut!(c[..num_constraints])
            .zip(&a)
            .zip(&b)
            .for_each(|((c_i, &a), &b)| {
                *c_i = a * b;
            });

        domain.ifft_in_place(&mut a);
        domain.ifft_in_place(&mut b);

        let root_of_unity = {
            let domain_size_double = 2 * domain_size;
            let domain_double =
                D::new(domain_size_double).ok_or(SynthesisError::PolynomialDegreeTooLarge)?;
            domain_double.element(1)
        };
        D::distribute_powers_and_mul_by_const(&mut a, root_of_unity, F::one());
        D::distribute_powers_and_mul_by_const(&mut b, root_of_unity, F::one());

        domain.fft_in_place(&mut a);
        domain.fft_in_place(&mut b);

        let mut ab = domain.mul_polynomials_in_evaluation_domain(&a, &b);
        drop(a);
        drop(b);

        domain.ifft_in_place(&mut c);
        D::distribute_powers_and_mul_by_const(&mut c, root_of_unity, F::one());
        domain.fft_in_place(&mut c);

        cfg_iter_mut!(ab)
            .zip(c)
            .for_each(|(ab_i, c_i)| *ab_i -= &c_i);

        Ok(ab)
    }

    fn h_query_scalars<F: PrimeField, D: EvaluationDomain<F>>(
        max_power: usize,
        t: F,
        _: F,
        delta_inverse: F,
    ) -> Result<Vec<F>, SynthesisError> {
        // the usual H query has domain-1 powers. Z has domain powers. So HZ has 2*domain-1 powers.
        let mut scalars = cfg_into_iter!(0..2 * max_power + 1)
            .map(|i| delta_inverse * t.pow([i as u64]))
            .collect::<Vec<_>>();
        let domain_size = scalars.len();
        let domain = D::new(domain_size).ok_or(SynthesisError::PolynomialDegreeTooLarge)?;
        // generate the lagrange coefficients
        domain.ifft_in_place(&mut scalars);
        Ok(cfg_into_iter!(scalars).skip(1).step_by(2).collect())
    }
}