1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
use crate::{
    models::{short_weierstrass::SWCurveConfig, CurveConfig},
    pairing::{MillerLoopOutput, Pairing, PairingOutput},
    AffineRepr,
};
use ark_ff::{
    fields::{
        fp12_2over3over2::{Fp12, Fp12Config},
        fp2::Fp2Config,
        fp6_3over2::Fp6Config,
        Fp2,
    },
    BitIteratorBE, CyclotomicMultSubgroup, Field, PrimeField,
};
use ark_std::{marker::PhantomData, vec::Vec};
use num_traits::{One, Zero};

#[cfg(feature = "parallel")]
use rayon::prelude::*;

/// A particular BLS12 group can have G2 being either a multiplicative or a
/// divisive twist.
pub enum TwistType {
    M,
    D,
}

pub trait Bls12Config: 'static + Sized {
    /// Parameterizes the BLS12 family.
    const X: &'static [u64];
    /// Is `Self::X` negative?
    const X_IS_NEGATIVE: bool;
    /// What kind of twist is this?
    const TWIST_TYPE: TwistType;

    type Fp: PrimeField + Into<<Self::Fp as PrimeField>::BigInt>;
    type Fp2Config: Fp2Config<Fp = Self::Fp>;
    type Fp6Config: Fp6Config<Fp2Config = Self::Fp2Config>;
    type Fp12Config: Fp12Config<Fp6Config = Self::Fp6Config>;
    type G1Config: SWCurveConfig<BaseField = Self::Fp>;
    type G2Config: SWCurveConfig<
        BaseField = Fp2<Self::Fp2Config>,
        ScalarField = <Self::G1Config as CurveConfig>::ScalarField,
    >;

    fn multi_miller_loop(
        a: impl IntoIterator<Item = impl Into<G1Prepared<Self>>>,
        b: impl IntoIterator<Item = impl Into<G2Prepared<Self>>>,
    ) -> MillerLoopOutput<Bls12<Self>> {
        use itertools::Itertools;

        let mut pairs = a
            .into_iter()
            .zip_eq(b)
            .filter_map(|(p, q)| {
                let (p, q) = (p.into(), q.into());
                match !p.is_zero() && !q.is_zero() {
                    true => Some((p, q.ell_coeffs.into_iter())),
                    false => None,
                }
            })
            .collect::<Vec<_>>();

        let mut f = cfg_chunks_mut!(pairs, 4)
            .map(|pairs| {
                let mut f = <Bls12<Self> as Pairing>::TargetField::one();
                for i in BitIteratorBE::without_leading_zeros(Self::X).skip(1) {
                    f.square_in_place();
                    for (p, coeffs) in pairs.iter_mut() {
                        Bls12::<Self>::ell(&mut f, &coeffs.next().unwrap(), &p.0);
                    }
                    if i {
                        for (p, coeffs) in pairs.iter_mut() {
                            Bls12::<Self>::ell(&mut f, &coeffs.next().unwrap(), &p.0);
                        }
                    }
                }
                f
            })
            .product::<<Bls12<Self> as Pairing>::TargetField>();

        if Self::X_IS_NEGATIVE {
            f.cyclotomic_inverse_in_place();
        }
        MillerLoopOutput(f)
    }

    fn final_exponentiation(
        f: MillerLoopOutput<Bls12<Self>>,
    ) -> Option<PairingOutput<Bls12<Self>>> {
        // Computing the final exponentation following
        // https://eprint.iacr.org/2020/875
        // Adapted from the implementation in https://github.com/ConsenSys/gurvy/pull/29

        // f1 = r.cyclotomic_inverse_in_place() = f^(p^6)
        let f = f.0;
        let mut f1 = f;
        f1.cyclotomic_inverse_in_place();

        f.inverse().map(|mut f2| {
            // f2 = f^(-1);
            // r = f^(p^6 - 1)
            let mut r = f1 * &f2;

            // f2 = f^(p^6 - 1)
            f2 = r;
            // r = f^((p^6 - 1)(p^2))
            r.frobenius_map_in_place(2);

            // r = f^((p^6 - 1)(p^2) + (p^6 - 1))
            // r = f^((p^6 - 1)(p^2 + 1))
            r *= &f2;

            // Hard part of the final exponentation:
            // t[0].CyclotomicSquare(&result)
            let mut y0 = r.cyclotomic_square();
            // t[1].Expt(&result)
            let mut y1 = Fp12::zero();
            Bls12::<Self>::exp_by_x(&r, &mut y1);
            // t[2].InverseUnitary(&result)
            let mut y2 = r;
            y2.cyclotomic_inverse_in_place();
            // t[1].Mul(&t[1], &t[2])
            y1 *= &y2;
            // t[2].Expt(&t[1])
            Bls12::<Self>::exp_by_x(&y1, &mut y2);
            // t[1].InverseUnitary(&t[1])
            y1.cyclotomic_inverse_in_place();
            // t[1].Mul(&t[1], &t[2])
            y1 *= &y2;
            // t[2].Expt(&t[1])
            Bls12::<Self>::exp_by_x(&y1, &mut y2);
            // t[1].Frobenius(&t[1])
            y1.frobenius_map_in_place(1);
            // t[1].Mul(&t[1], &t[2])
            y1 *= &y2;
            // result.Mul(&result, &t[0])
            r *= &y0;
            // t[0].Expt(&t[1])
            Bls12::<Self>::exp_by_x(&y1, &mut y0);
            // t[2].Expt(&t[0])
            Bls12::<Self>::exp_by_x(&y0, &mut y2);
            // t[0].FrobeniusSquare(&t[1])
            y0 = y1;
            y0.frobenius_map_in_place(2);
            // t[1].InverseUnitary(&t[1])
            y1.cyclotomic_inverse_in_place();
            // t[1].Mul(&t[1], &t[2])
            y1 *= &y2;
            // t[1].Mul(&t[1], &t[0])
            y1 *= &y0;
            // result.Mul(&result, &t[1])
            r *= &y1;
            PairingOutput(r)
        })
    }
}

pub mod g1;
pub mod g2;

pub use self::{
    g1::{G1Affine, G1Prepared, G1Projective},
    g2::{G2Affine, G2Prepared, G2Projective},
};

#[derive(Derivative)]
#[derivative(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub struct Bls12<P: Bls12Config>(PhantomData<fn() -> P>);

impl<P: Bls12Config> Bls12<P> {
    // Evaluate the line function at point p.
    fn ell(f: &mut Fp12<P::Fp12Config>, coeffs: &g2::EllCoeff<P>, p: &G1Affine<P>) {
        let mut c0 = coeffs.0;
        let mut c1 = coeffs.1;
        let mut c2 = coeffs.2;
        let (px, py) = p.xy().unwrap();

        match P::TWIST_TYPE {
            TwistType::M => {
                c2.mul_assign_by_fp(py);
                c1.mul_assign_by_fp(px);
                f.mul_by_014(&c0, &c1, &c2);
            },
            TwistType::D => {
                c0.mul_assign_by_fp(py);
                c1.mul_assign_by_fp(px);
                f.mul_by_034(&c0, &c1, &c2);
            },
        }
    }

    // Exponentiates `f` by `Self::X`, and stores the result in `result`.
    fn exp_by_x(f: &Fp12<P::Fp12Config>, result: &mut Fp12<P::Fp12Config>) {
        *result = f.cyclotomic_exp(P::X);
        if P::X_IS_NEGATIVE {
            result.cyclotomic_inverse_in_place();
        }
    }
}

impl<P: Bls12Config> Pairing for Bls12<P> {
    type BaseField = <P::G1Config as CurveConfig>::BaseField;
    type ScalarField = <P::G1Config as CurveConfig>::ScalarField;
    type G1 = G1Projective<P>;
    type G1Affine = G1Affine<P>;
    type G1Prepared = G1Prepared<P>;
    type G2 = G2Projective<P>;
    type G2Affine = G2Affine<P>;
    type G2Prepared = G2Prepared<P>;
    type TargetField = Fp12<P::Fp12Config>;

    fn multi_miller_loop(
        a: impl IntoIterator<Item = impl Into<Self::G1Prepared>>,
        b: impl IntoIterator<Item = impl Into<Self::G2Prepared>>,
    ) -> MillerLoopOutput<Self> {
        P::multi_miller_loop(a, b)
    }

    fn final_exponentiation(f: MillerLoopOutput<Self>) -> Option<PairingOutput<Self>> {
        P::final_exponentiation(f)
    }
}