1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#![cfg_attr(not(feature = "std"), no_std)]
#![warn(
    unused,
    future_incompatible,
    nonstandard_style,
    rust_2018_idioms,
    rust_2021_compatibility
)]
#![forbid(unsafe_code)]
#![allow(
    clippy::op_ref,
    clippy::suspicious_op_assign_impl,
    clippy::many_single_char_names
)]
#![doc = include_str!("../README.md")]

#[macro_use]
extern crate derivative;

#[macro_use]
extern crate ark_std;

use ark_ff::{
    fields::{Field, PrimeField},
    UniformRand,
};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::{
    fmt::{Debug, Display},
    hash::Hash,
    ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign},
    vec::Vec,
};
use num_traits::Zero;
pub use scalar_mul::{variable_base::VariableBaseMSM, ScalarMul};
use zeroize::Zeroize;

pub mod models;
pub use self::models::*;

pub mod scalar_mul;

/// Provides a `HashToCurve` trait and implementations of this trait via
/// different hashing strategies.
pub mod hashing;

pub mod pairing;

/// Represents (elements of) a group of prime order `r`.
pub trait Group:
    Eq
    + 'static
    + Sized
    + CanonicalSerialize
    + CanonicalDeserialize
    + Copy
    + Clone
    + Default
    + Send
    + Sync
    + Hash
    + Debug
    + Display
    + UniformRand
    + Zeroize
    + Zero
    + Neg<Output = Self>
    + Add<Self, Output = Self>
    + Sub<Self, Output = Self>
    + Mul<<Self as Group>::ScalarField, Output = Self>
    + AddAssign<Self>
    + SubAssign<Self>
    + MulAssign<<Self as Group>::ScalarField>
    + for<'a> Add<&'a Self, Output = Self>
    + for<'a> Sub<&'a Self, Output = Self>
    + for<'a> Mul<&'a <Self as Group>::ScalarField, Output = Self>
    + for<'a> AddAssign<&'a Self>
    + for<'a> SubAssign<&'a Self>
    + for<'a> MulAssign<&'a <Self as Group>::ScalarField>
    + core::iter::Sum<Self>
    + for<'a> core::iter::Sum<&'a Self>
{
    /// The scalar field `F_r`, where `r` is the order of this group.
    type ScalarField: PrimeField;

    /// Returns a fixed generator of this group.
    #[must_use]
    fn generator() -> Self;

    /// Doubles `self`.
    #[must_use]
    fn double(&self) -> Self {
        let mut copy = *self;
        copy.double_in_place();
        copy
    }

    /// Double `self` in place.
    fn double_in_place(&mut self) -> &mut Self;

    /// Performs scalar multiplication of this element.
    fn mul_bigint(&self, other: impl AsRef<[u64]>) -> Self;

    /// Computes `other * self`, where `other` is a *big-endian*
    /// bit representation of some integer.
    fn mul_bits_be(&self, other: impl Iterator<Item = bool>) -> Self {
        let mut res = Self::zero();
        for b in other.skip_while(|b| !b) {
            // skip leading zeros
            res.double_in_place();
            if b {
                res += self;
            }
        }
        res
    }
}

/// An opaque representation of an elliptic curve group element that is suitable
/// for efficient group arithmetic.
///
/// The point is guaranteed to be in the correct prime order subgroup.
pub trait CurveGroup:
    Group
    + Add<Self::Affine, Output = Self>
    + AddAssign<Self::Affine>
    // + for<'a> Add<&'a Self::Affine, Output = Self>
    // + for<'a> AddAssign<&'a Self::Affine>
    + VariableBaseMSM
    + ScalarMul<MulBase = Self::Affine>
    + From<Self::Affine>
    + Into<Self::Affine>
    + core::iter::Sum<Self::Affine>
    + for<'a> core::iter::Sum<&'a Self::Affine>
{
    type Config: CurveConfig<ScalarField = Self::ScalarField, BaseField = Self::BaseField>;
    /// The field over which this curve is defined.
    type BaseField: Field;
    /// The affine representation of this element.
    type Affine: AffineRepr<
            Config = Self::Config,
            Group = Self,
            ScalarField = Self::ScalarField,
            BaseField = Self::BaseField,
        > + From<Self>
        + Into<Self>;

    /// Type representing an element of the full elliptic curve group, not just the
    /// prime order subgroup.
    type FullGroup;

    /// Normalizes a slice of group elements into affine.
    #[must_use]
    fn normalize_batch(v: &[Self]) -> Vec<Self::Affine>;

    /// Converts `self` into the affine representation.
    fn into_affine(self) -> Self::Affine {
        self.into()
    }
}

/// The canonical representation of an elliptic curve group element.
/// This should represent the affine coordinates of the point corresponding
/// to this group element.
///
/// The point is guaranteed to be in the correct prime order subgroup.
pub trait AffineRepr:
    Eq
    + 'static
    + Sized
    + CanonicalSerialize
    + CanonicalDeserialize
    + Copy
    + Clone
    + Default
    + UniformRand
    + Send
    + Sync
    + Hash
    + Debug
    + Display
    + Zeroize
    + From<<Self as AffineRepr>::Group>
    + Into<<Self as AffineRepr>::Group>
    + Add<Self, Output = Self::Group>
    + for<'a> Add<&'a Self, Output = Self::Group>
    + Add<Self::Group, Output = Self::Group>
    + for<'a> Add<&'a Self::Group, Output = Self::Group>
    + Mul<Self::ScalarField, Output = Self::Group>
    + for<'a> Mul<&'a Self::ScalarField, Output = Self::Group>
{
    type Config: CurveConfig<ScalarField = Self::ScalarField, BaseField = Self::BaseField>;
    type ScalarField: PrimeField + Into<<Self::ScalarField as PrimeField>::BigInt>;
    /// The finite field over which this curve is defined.
    type BaseField: Field;

    /// The projective representation of points on this curve.
    type Group: CurveGroup<
            Config = Self::Config,
            Affine = Self,
            ScalarField = Self::ScalarField,
            BaseField = Self::BaseField,
        > + From<Self>
        + Into<Self>
        + MulAssign<Self::ScalarField>; // needed due to https://github.com/rust-lang/rust/issues/69640

    /// Returns the x and y coordinates of this affine point.
    fn xy(&self) -> Option<(&Self::BaseField, &Self::BaseField)>;

    /// Returns the x coordinate of this affine point.
    fn x(&self) -> Option<&Self::BaseField> {
        self.xy().map(|(x, _)| x)
    }

    /// Returns the y coordinate of this affine point.
    fn y(&self) -> Option<&Self::BaseField> {
        self.xy().map(|(_, y)| y)
    }

    /// Returns the point at infinity.
    fn zero() -> Self;

    /// Is `self` the point at infinity?
    fn is_zero(&self) -> bool {
        self.xy().is_none()
    }

    /// Returns a fixed generator of unknown exponent.
    #[must_use]
    fn generator() -> Self;

    /// Converts self into the projective representation.
    fn into_group(self) -> Self::Group {
        self.into()
    }

    /// Returns a group element if the set of bytes forms a valid group element,
    /// otherwise returns None. This function is primarily intended for sampling
    /// random group elements from a hash-function or RNG output.
    fn from_random_bytes(bytes: &[u8]) -> Option<Self>;

    /// Performs scalar multiplication of this element with mixed addition.
    #[must_use]
    fn mul_bigint(&self, by: impl AsRef<[u64]>) -> Self::Group;

    /// Performs cofactor clearing.
    /// The default method is simply to multiply by the cofactor.
    /// For some curve families more efficient methods exist.
    #[must_use]
    fn clear_cofactor(&self) -> Self;

    /// Multiplies this element by the cofactor and output the
    /// resulting projective element.
    #[must_use]
    fn mul_by_cofactor_to_group(&self) -> Self::Group;

    /// Multiplies this element by the cofactor.
    #[must_use]
    fn mul_by_cofactor(&self) -> Self {
        self.mul_by_cofactor_to_group().into()
    }

    /// Multiplies this element by the inverse of the cofactor in
    /// `Self::ScalarField`.
    #[must_use]
    fn mul_by_cofactor_inv(&self) -> Self {
        self.mul_bigint(Self::Config::COFACTOR_INV.into_bigint())
            .into()
    }
}

/// Wrapper trait representing a cycle of elliptic curves (E1, E2) such that
/// the base field of E1 is the scalar field of E2, and the scalar field of E1
/// is the base field of E2.
pub trait CurveCycle
where
    Self::E1: MulAssign<<Self::E2 as CurveGroup>::BaseField>,
    Self::E2: MulAssign<<Self::E1 as CurveGroup>::BaseField>,
{
    type E1: CurveGroup<
        BaseField = <Self::E2 as Group>::ScalarField,
        ScalarField = <Self::E2 as CurveGroup>::BaseField,
    >;
    type E2: CurveGroup;
}

/// A cycle of curves where both curves are pairing-friendly.
pub trait PairingFriendlyCycle: CurveCycle {
    type Engine1: pairing::Pairing<
        G1 = Self::E1,
        G1Affine = <Self::E1 as CurveGroup>::Affine,
        ScalarField = <Self::E1 as Group>::ScalarField,
    >;

    type Engine2: pairing::Pairing<
        G1 = Self::E2,
        G1Affine = <Self::E2 as CurveGroup>::Affine,
        ScalarField = <Self::E2 as Group>::ScalarField,
    >;
}