1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
use ark_ff::{BitIteratorBE, Field};
use ark_serialize::*;
use ark_std::vec::Vec;
use num_traits::One;

use crate::{
    bw6::{BW6Config, TwistType},
    models::short_weierstrass::SWCurveConfig,
    short_weierstrass::{Affine, Projective},
    AffineRepr, CurveGroup,
};

pub type G2Affine<P> = Affine<<P as BW6Config>::G2Config>;
pub type G2Projective<P> = Projective<<P as BW6Config>::G2Config>;

#[derive(Derivative, CanonicalSerialize, CanonicalDeserialize)]
#[derivative(
    Clone(bound = "P: BW6Config"),
    Debug(bound = "P: BW6Config"),
    PartialEq(bound = "P: BW6Config"),
    Eq(bound = "P: BW6Config")
)]
pub struct G2Prepared<P: BW6Config> {
    // Stores the coefficients of the line evaluations as calculated in
    // https://eprint.iacr.org/2013/722.pdf
    pub ell_coeffs_1: Vec<(P::Fp, P::Fp, P::Fp)>,
    pub ell_coeffs_2: Vec<(P::Fp, P::Fp, P::Fp)>,
    pub infinity: bool,
}

#[derive(Derivative, CanonicalSerialize, CanonicalDeserialize)]
#[derivative(
    Clone(bound = "P: BW6Config"),
    Copy(bound = "P: BW6Config"),
    Debug(bound = "P: BW6Config")
)]
struct G2HomProjective<P: BW6Config> {
    x: P::Fp,
    y: P::Fp,
    z: P::Fp,
}

impl<P: BW6Config> Default for G2Prepared<P> {
    fn default() -> Self {
        Self::from(G2Affine::<P>::generator())
    }
}

impl<P: BW6Config> From<G2Affine<P>> for G2Prepared<P> {
    fn from(q: G2Affine<P>) -> Self {
        if q.infinity {
            return Self {
                ell_coeffs_1: vec![],
                ell_coeffs_2: vec![],
                infinity: true,
            };
        }

        // f_{u+1,Q}(P)
        let mut ell_coeffs_1 = vec![];
        let mut r = G2HomProjective::<P> {
            x: q.x,
            y: q.y,
            z: P::Fp::one(),
        };

        for i in BitIteratorBE::new(P::ATE_LOOP_COUNT_1).skip(1) {
            ell_coeffs_1.push(r.double_in_place());

            if i {
                ell_coeffs_1.push(r.add_in_place(&q));
            }
        }

        // f_{u^3-u^2-u,Q}(P)
        let mut ell_coeffs_2 = vec![];
        let mut r = G2HomProjective::<P> {
            x: q.x,
            y: q.y,
            z: P::Fp::one(),
        };

        let negq = -q;

        for bit in P::ATE_LOOP_COUNT_2.iter().rev().skip(1) {
            ell_coeffs_2.push(r.double_in_place());

            match bit {
                1 => ell_coeffs_2.push(r.add_in_place(&q)),
                -1 => ell_coeffs_2.push(r.add_in_place(&negq)),
                _ => continue,
            }
        }

        Self {
            ell_coeffs_1,
            ell_coeffs_2,
            infinity: false,
        }
    }
}

impl<'a, P: BW6Config> From<&'a G2Affine<P>> for G2Prepared<P> {
    fn from(q: &'a G2Affine<P>) -> Self {
        (*q).into()
    }
}

impl<'a, P: BW6Config> From<&'a G2Projective<P>> for G2Prepared<P> {
    fn from(q: &'a G2Projective<P>) -> Self {
        q.into_affine().into()
    }
}

impl<P: BW6Config> From<G2Projective<P>> for G2Prepared<P> {
    fn from(q: G2Projective<P>) -> Self {
        q.into_affine().into()
    }
}

impl<P: BW6Config> G2Prepared<P> {
    pub fn is_zero(&self) -> bool {
        self.infinity
    }
}

impl<P: BW6Config> G2HomProjective<P> {
    fn double_in_place(&mut self) -> (P::Fp, P::Fp, P::Fp) {
        // Formula for line function when working with
        // homogeneous projective coordinates, as described in https://eprint.iacr.org/2013/722.pdf.

        let a = self.x * &self.y;
        let b = self.y.square();
        let b4 = b.double().double();
        let c = self.z.square();
        let e = P::G2Config::COEFF_B * &(c.double() + &c);
        let f = e.double() + &e;
        let g = b + &f;
        let h = (self.y + &self.z).square() - &(b + &c);
        let i = e - &b;
        let j = self.x.square();
        let e2_square = e.double().square();

        self.x = a.double() * &(b - &f);
        self.y = g.square() - &(e2_square.double() + &e2_square);
        self.z = b4 * &h;
        match P::TWIST_TYPE {
            TwistType::M => (i, j.double() + &j, -h),
            TwistType::D => (-h, j.double() + &j, i),
        }
    }

    fn add_in_place(&mut self, q: &G2Affine<P>) -> (P::Fp, P::Fp, P::Fp) {
        // Formula for line function when working with
        // homogeneous projective coordinates, as described in https://eprint.iacr.org/2013/722.pdf.
        let theta = self.y - &(q.y * &self.z);
        let lambda = self.x - &(q.x * &self.z);
        let c = theta.square();
        let d = lambda.square();
        let e = lambda * &d;
        let f = self.z * &c;
        let g = self.x * &d;
        let h = e + &f - &g.double();
        self.x = lambda * &h;
        self.y = theta * &(g - &h) - &(e * &self.y);
        self.z *= &e;
        let j = theta * &q.x - &(lambda * &q.y);

        match P::TWIST_TYPE {
            TwistType::M => (j, -theta, lambda),
            TwistType::D => (lambda, -theta, j),
        }
    }
}