1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
use ark_serialize::{
    CanonicalDeserialize, CanonicalDeserializeWithFlags, CanonicalSerialize,
    CanonicalSerializeWithFlags, Compress, SerializationError, Valid, Validate,
};
use ark_std::io::{Read, Write};

use ark_ff::fields::Field;

use crate::{scalar_mul::variable_base::VariableBaseMSM, AffineRepr, Group};

use num_traits::Zero;

mod affine;
pub use affine::*;

mod group;
pub use group::*;

mod serialization_flags;
pub use serialization_flags::*;

/// Constants and convenience functions that collectively define the [Short Weierstrass model](https://www.hyperelliptic.org/EFD/g1p/auto-shortw.html)
/// of the curve. In this model, the curve equation is `y² = x³ + a * x + b`,
/// for constants `a` and `b`.
pub trait SWCurveConfig: super::CurveConfig {
    /// Coefficient `a` of the curve equation.
    const COEFF_A: Self::BaseField;
    /// Coefficient `b` of the curve equation.
    const COEFF_B: Self::BaseField;
    /// Generator of the prime-order subgroup.
    const GENERATOR: Affine<Self>;

    /// Helper method for computing `elem * Self::COEFF_A`.
    ///
    /// The default implementation should be overridden only if
    /// the product can be computed faster than standard field multiplication
    /// (eg: via doubling if `COEFF_A == 2`, or if `COEFF_A.is_zero()`).
    #[inline(always)]
    fn mul_by_a(elem: Self::BaseField) -> Self::BaseField {
        if Self::COEFF_A.is_zero() {
            Self::BaseField::ZERO
        } else {
            elem * Self::COEFF_A
        }
    }

    /// Helper method for computing `elem + Self::COEFF_B`.
    ///
    /// The default implementation should be overridden only if
    /// the sum can be computed faster than standard field addition (eg: via
    /// doubling).
    #[inline(always)]
    fn add_b(elem: Self::BaseField) -> Self::BaseField {
        if Self::COEFF_B.is_zero() {
            elem
        } else {
            elem + &Self::COEFF_B
        }
    }

    /// Check if the provided curve point is in the prime-order subgroup.
    ///
    /// The default implementation multiplies `item` by the order `r` of the
    /// prime-order subgroup, and checks if the result is one.
    /// Implementors can choose to override this default impl
    /// if the given curve has faster methods
    /// for performing this check (for example, via leveraging curve
    /// isomorphisms).
    fn is_in_correct_subgroup_assuming_on_curve(item: &Affine<Self>) -> bool {
        Self::mul_affine(item, Self::ScalarField::characteristic()).is_zero()
    }

    /// Performs cofactor clearing.
    /// The default method is simply to multiply by the cofactor.
    /// Some curves can implement a more efficient algorithm.
    fn clear_cofactor(item: &Affine<Self>) -> Affine<Self> {
        item.mul_by_cofactor()
    }

    /// Default implementation of group multiplication for projective
    /// coordinates
    fn mul_projective(base: &Projective<Self>, scalar: &[u64]) -> Projective<Self> {
        let mut res = Projective::<Self>::zero();
        for b in ark_ff::BitIteratorBE::without_leading_zeros(scalar) {
            res.double_in_place();
            if b {
                res += base;
            }
        }

        res
    }

    /// Default implementation of group multiplication for affine
    /// coordinates.
    fn mul_affine(base: &Affine<Self>, scalar: &[u64]) -> Projective<Self> {
        let mut res = Projective::<Self>::zero();
        for b in ark_ff::BitIteratorBE::without_leading_zeros(scalar) {
            res.double_in_place();
            if b {
                res += base
            }
        }

        res
    }

    /// Default implementation for multi scalar multiplication
    fn msm(
        bases: &[Affine<Self>],
        scalars: &[Self::ScalarField],
    ) -> Result<Projective<Self>, usize> {
        (bases.len() == scalars.len())
            .then(|| VariableBaseMSM::msm_unchecked(bases, scalars))
            .ok_or(bases.len().min(scalars.len()))
    }

    /// If uncompressed, serializes both x and y coordinates as well as a bit for whether it is
    /// infinity. If compressed, serializes x coordinate with two bits to encode whether y is
    /// positive, negative, or infinity.
    #[inline]
    fn serialize_with_mode<W: Write>(
        item: &Affine<Self>,
        mut writer: W,
        compress: ark_serialize::Compress,
    ) -> Result<(), SerializationError> {
        let (x, y, flags) = match item.infinity {
            true => (
                Self::BaseField::zero(),
                Self::BaseField::zero(),
                SWFlags::infinity(),
            ),
            false => (item.x, item.y, item.to_flags()),
        };

        match compress {
            Compress::Yes => x.serialize_with_flags(writer, flags),
            Compress::No => {
                x.serialize_with_mode(&mut writer, compress)?;
                y.serialize_with_flags(&mut writer, flags)
            },
        }
    }

    /// If `validate` is `Yes`, calls `check()` to make sure the element is valid.
    fn deserialize_with_mode<R: Read>(
        mut reader: R,
        compress: Compress,
        validate: Validate,
    ) -> Result<Affine<Self>, SerializationError> {
        let (x, y, flags) = match compress {
            Compress::Yes => {
                let (x, flags): (_, SWFlags) =
                    CanonicalDeserializeWithFlags::deserialize_with_flags(reader)?;
                match flags {
                    SWFlags::PointAtInfinity => (
                        Affine::<Self>::identity().x,
                        Affine::<Self>::identity().y,
                        flags,
                    ),
                    _ => {
                        let is_positive = flags.is_positive().unwrap();
                        let (y, neg_y) = Affine::<Self>::get_ys_from_x_unchecked(x)
                            .ok_or(SerializationError::InvalidData)?;
                        if is_positive {
                            (x, y, flags)
                        } else {
                            (x, neg_y, flags)
                        }
                    },
                }
            },
            Compress::No => {
                let x: Self::BaseField =
                    CanonicalDeserialize::deserialize_with_mode(&mut reader, compress, validate)?;
                let (y, flags): (_, SWFlags) =
                    CanonicalDeserializeWithFlags::deserialize_with_flags(&mut reader)?;
                (x, y, flags)
            },
        };
        if flags.is_infinity() {
            Ok(Affine::<Self>::identity())
        } else {
            let point = Affine::<Self>::new_unchecked(x, y);
            if let Validate::Yes = validate {
                point.check()?;
            }
            Ok(point)
        }
    }

    #[inline]
    fn serialized_size(compress: Compress) -> usize {
        let zero = Self::BaseField::zero();
        match compress {
            Compress::Yes => zero.serialized_size_with_flags::<SWFlags>(),
            Compress::No => zero.compressed_size() + zero.serialized_size_with_flags::<SWFlags>(),
        }
    }
}