ark_ec/models/short_weierstrass/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
use ark_serialize::{
CanonicalDeserialize, CanonicalDeserializeWithFlags, CanonicalSerialize,
CanonicalSerializeWithFlags, Compress, SerializationError, Valid, Validate,
};
use ark_std::io::{Read, Write};
use ark_ff::{fields::Field, AdditiveGroup};
use crate::{
scalar_mul::{
sw_double_and_add_affine, sw_double_and_add_projective, variable_base::VariableBaseMSM,
},
AffineRepr,
};
use num_traits::Zero;
mod affine;
pub use affine::*;
mod group;
pub use group::*;
mod serialization_flags;
pub use serialization_flags::*;
/// Constants and convenience functions that collectively define the [Short Weierstrass model](https://www.hyperelliptic.org/EFD/g1p/auto-shortw.html)
/// of the curve. In this model, the curve equation is `y² = x³ + a * x + b`,
/// for constants `a` and `b`.
pub trait SWCurveConfig: super::CurveConfig {
/// Coefficient `a` of the curve equation.
const COEFF_A: Self::BaseField;
/// Coefficient `b` of the curve equation.
const COEFF_B: Self::BaseField;
/// Generator of the prime-order subgroup.
const GENERATOR: Affine<Self>;
/// Helper method for computing `elem * Self::COEFF_A`.
///
/// The default implementation should be overridden only if
/// the product can be computed faster than standard field multiplication
/// (eg: via doubling if `COEFF_A == 2`, or if `COEFF_A.is_zero()`).
#[inline(always)]
fn mul_by_a(elem: Self::BaseField) -> Self::BaseField {
if Self::COEFF_A.is_zero() {
Self::BaseField::ZERO
} else {
elem * Self::COEFF_A
}
}
/// Helper method for computing `elem + Self::COEFF_B`.
///
/// The default implementation should be overridden only if
/// the sum can be computed faster than standard field addition (eg: via
/// doubling).
#[inline(always)]
fn add_b(elem: Self::BaseField) -> Self::BaseField {
if Self::COEFF_B.is_zero() {
elem
} else {
elem + &Self::COEFF_B
}
}
/// Check if the provided curve point is in the prime-order subgroup.
///
/// The default implementation multiplies `item` by the order `r` of the
/// prime-order subgroup, and checks if the result is zero. If the
/// curve's cofactor is one, this check automatically returns true.
/// Implementors can choose to override this default impl
/// if the given curve has faster methods
/// for performing this check (for example, via leveraging curve
/// isomorphisms).
fn is_in_correct_subgroup_assuming_on_curve(item: &Affine<Self>) -> bool {
if Self::cofactor_is_one() {
true
} else {
Self::mul_affine(item, Self::ScalarField::characteristic()).is_zero()
}
}
/// Performs cofactor clearing.
/// The default method is simply to multiply by the cofactor.
/// Some curves can implement a more efficient algorithm.
fn clear_cofactor(item: &Affine<Self>) -> Affine<Self> {
item.mul_by_cofactor()
}
/// Default implementation of group multiplication for projective
/// coordinates
fn mul_projective(base: &Projective<Self>, scalar: &[u64]) -> Projective<Self> {
sw_double_and_add_projective(base, scalar)
}
/// Default implementation of group multiplication for affine
/// coordinates.
fn mul_affine(base: &Affine<Self>, scalar: &[u64]) -> Projective<Self> {
sw_double_and_add_affine(base, scalar)
}
/// Default implementation for multi scalar multiplication
fn msm(
bases: &[Affine<Self>],
scalars: &[Self::ScalarField],
) -> Result<Projective<Self>, usize> {
(bases.len() == scalars.len())
.then(|| VariableBaseMSM::msm_unchecked(bases, scalars))
.ok_or(bases.len().min(scalars.len()))
}
/// If uncompressed, serializes both x and y coordinates as well as a bit for whether it is
/// infinity. If compressed, serializes x coordinate with two bits to encode whether y is
/// positive, negative, or infinity.
#[inline]
fn serialize_with_mode<W: Write>(
item: &Affine<Self>,
mut writer: W,
compress: ark_serialize::Compress,
) -> Result<(), SerializationError> {
let (x, y, flags) = match item.infinity {
true => (
Self::BaseField::zero(),
Self::BaseField::zero(),
SWFlags::infinity(),
),
false => (item.x, item.y, item.to_flags()),
};
match compress {
Compress::Yes => x.serialize_with_flags(writer, flags),
Compress::No => {
x.serialize_with_mode(&mut writer, compress)?;
y.serialize_with_flags(&mut writer, flags)
},
}
}
/// If `validate` is `Yes`, calls `check()` to make sure the element is valid.
fn deserialize_with_mode<R: Read>(
mut reader: R,
compress: Compress,
validate: Validate,
) -> Result<Affine<Self>, SerializationError> {
let (x, y, flags) = match compress {
Compress::Yes => {
let (x, flags): (_, SWFlags) =
CanonicalDeserializeWithFlags::deserialize_with_flags(reader)?;
match flags {
SWFlags::PointAtInfinity => (
Affine::<Self>::identity().x,
Affine::<Self>::identity().y,
flags,
),
_ => {
let is_positive = flags.is_positive().unwrap();
let (y, neg_y) = Affine::<Self>::get_ys_from_x_unchecked(x)
.ok_or(SerializationError::InvalidData)?;
if is_positive {
(x, y, flags)
} else {
(x, neg_y, flags)
}
},
}
},
Compress::No => {
let x: Self::BaseField =
CanonicalDeserialize::deserialize_with_mode(&mut reader, compress, validate)?;
let (y, flags): (_, SWFlags) =
CanonicalDeserializeWithFlags::deserialize_with_flags(&mut reader)?;
(x, y, flags)
},
};
if flags.is_infinity() {
Ok(Affine::<Self>::identity())
} else {
let point = Affine::<Self>::new_unchecked(x, y);
if let Validate::Yes = validate {
point.check()?;
}
Ok(point)
}
}
#[inline]
fn serialized_size(compress: Compress) -> usize {
let zero = Self::BaseField::zero();
match compress {
Compress::Yes => zero.serialized_size_with_flags::<SWFlags>(),
Compress::No => zero.compressed_size() + zero.serialized_size_with_flags::<SWFlags>(),
}
}
}