ark_ec/models/bls12/
g2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
use ark_ff::{AdditiveGroup, BitIteratorBE, Field, Fp2};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::{vec::*, One};
use educe::Educe;

use crate::{
    bls12::{Bls12Config, TwistType},
    models::short_weierstrass::SWCurveConfig,
    short_weierstrass::{Affine, Projective},
    AffineRepr, CurveGroup,
};

pub type G2Affine<P> = Affine<<P as Bls12Config>::G2Config>;
pub type G2Projective<P> = Projective<<P as Bls12Config>::G2Config>;

#[derive(Educe, CanonicalSerialize, CanonicalDeserialize)]
#[educe(Clone, Debug, PartialEq, Eq)]
pub struct G2Prepared<P: Bls12Config> {
    /// Stores the coefficients of the line evaluations as calculated in
    /// <https://eprint.iacr.org/2013/722.pdf>
    pub ell_coeffs: Vec<EllCoeff<P>>,
    pub infinity: bool,
}

pub type EllCoeff<P> = (
    Fp2<<P as Bls12Config>::Fp2Config>,
    Fp2<<P as Bls12Config>::Fp2Config>,
    Fp2<<P as Bls12Config>::Fp2Config>,
);

#[derive(Educe)]
#[educe(Clone, Copy, Debug)]
pub struct G2HomProjective<P: Bls12Config> {
    x: Fp2<P::Fp2Config>,
    y: Fp2<P::Fp2Config>,
    z: Fp2<P::Fp2Config>,
}

impl<P: Bls12Config> Default for G2Prepared<P> {
    fn default() -> Self {
        Self::from(G2Affine::<P>::generator())
    }
}

impl<P: Bls12Config> From<G2Affine<P>> for G2Prepared<P> {
    fn from(q: G2Affine<P>) -> Self {
        let two_inv = P::Fp::one().double().inverse().unwrap();
        let zero = G2Prepared {
            ell_coeffs: vec![],
            infinity: true,
        };
        q.xy().map_or(zero, |(q_x, q_y)| {
            let mut ell_coeffs = vec![];
            let mut r = G2HomProjective::<P> {
                x: q_x,
                y: q_y,
                z: Fp2::one(),
            };

            for i in BitIteratorBE::new(P::X).skip(1) {
                ell_coeffs.push(r.double_in_place(&two_inv));

                if i {
                    ell_coeffs.push(r.add_in_place(&q));
                }
            }

            Self {
                ell_coeffs,
                infinity: false,
            }
        })
    }
}

impl<P: Bls12Config> From<G2Projective<P>> for G2Prepared<P> {
    fn from(q: G2Projective<P>) -> Self {
        q.into_affine().into()
    }
}

impl<'a, P: Bls12Config> From<&'a G2Affine<P>> for G2Prepared<P> {
    fn from(other: &'a G2Affine<P>) -> Self {
        (*other).into()
    }
}

impl<'a, P: Bls12Config> From<&'a G2Projective<P>> for G2Prepared<P> {
    fn from(q: &'a G2Projective<P>) -> Self {
        q.into_affine().into()
    }
}

impl<P: Bls12Config> G2Prepared<P> {
    pub fn is_zero(&self) -> bool {
        self.infinity
    }
}

impl<P: Bls12Config> G2HomProjective<P> {
    fn double_in_place(&mut self, two_inv: &P::Fp) -> EllCoeff<P> {
        // Formula for line function when working with
        // homogeneous projective coordinates.

        let mut a = self.x * &self.y;
        a.mul_assign_by_fp(two_inv);
        let b = self.y.square();
        let c = self.z.square();
        let e = P::G2Config::COEFF_B * &(c.double() + &c);
        let f = e.double() + &e;
        let mut g = b + &f;
        g.mul_assign_by_fp(two_inv);
        let h = (self.y + &self.z).square() - &(b + &c);
        let i = e - &b;
        let j = self.x.square();
        let e_square = e.square();

        self.x = a * &(b - &f);
        self.y = g.square() - &(e_square.double() + &e_square);
        self.z = b * &h;
        match P::TWIST_TYPE {
            TwistType::M => (i, j.double() + &j, -h),
            TwistType::D => (-h, j.double() + &j, i),
        }
    }

    fn add_in_place(&mut self, q: &G2Affine<P>) -> EllCoeff<P> {
        let (qx, qy) = q.xy().unwrap();
        // Formula for line function when working with
        // homogeneous projective coordinates.
        let theta = self.y - &(qy * &self.z);
        let lambda = self.x - &(qx * &self.z);
        let c = theta.square();
        let d = lambda.square();
        let e = lambda * &d;
        let f = self.z * &c;
        let g = self.x * &d;
        let h = e + &f - &g.double();
        self.x = lambda * &h;
        self.y = theta * &(g - &h) - &(e * &self.y);
        self.z *= &e;
        let j = theta * &qx - &(lambda * &qy);

        match P::TWIST_TYPE {
            TwistType::M => (j, -theta, lambda),
            TwistType::D => (lambda, -theta, j),
        }
    }
}