use ark_ff::{AdditiveGroup, BitIteratorBE, Field};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::vec::*;
use educe::Educe;
use num_traits::One;
use crate::{
bw6::{BW6Config, TwistType},
models::short_weierstrass::SWCurveConfig,
short_weierstrass::{Affine, Projective},
AffineRepr, CurveGroup,
};
pub type G2Affine<P> = Affine<<P as BW6Config>::G2Config>;
pub type G2Projective<P> = Projective<<P as BW6Config>::G2Config>;
#[derive(Educe, CanonicalSerialize, CanonicalDeserialize)]
#[educe(Clone, Debug, PartialEq, Eq)]
pub struct G2Prepared<P: BW6Config> {
pub ell_coeffs_1: Vec<(P::Fp, P::Fp, P::Fp)>,
pub ell_coeffs_2: Vec<(P::Fp, P::Fp, P::Fp)>,
pub infinity: bool,
}
#[derive(Educe, CanonicalSerialize, CanonicalDeserialize)]
#[educe(Clone, Copy, Debug)]
pub struct G2HomProjective<P: BW6Config> {
x: P::Fp,
y: P::Fp,
z: P::Fp,
}
impl<P: BW6Config> Default for G2Prepared<P> {
fn default() -> Self {
Self::from(G2Affine::<P>::generator())
}
}
impl<P: BW6Config> From<G2HomProjective<P>> for G2Affine<P> {
fn from(q: G2HomProjective<P>) -> Self {
let z_inv = q.z.inverse().unwrap();
let x = q.x * &z_inv;
let y = q.y * &z_inv;
G2Affine::<P>::new_unchecked(x, y)
}
}
impl<P: BW6Config> From<G2Affine<P>> for G2Prepared<P> {
fn from(q: G2Affine<P>) -> Self {
if q.infinity {
return Self {
ell_coeffs_1: vec![],
ell_coeffs_2: vec![],
infinity: true,
};
}
let mut ell_coeffs_1 = vec![];
let mut r = G2HomProjective::<P> {
x: q.x,
y: q.y,
z: P::Fp::one(),
};
for i in BitIteratorBE::new(P::ATE_LOOP_COUNT_1).skip(1) {
ell_coeffs_1.push(r.double_in_place());
if i {
ell_coeffs_1.push(r.add_in_place(&q));
}
}
let r_affine: G2Affine<P> = r.into();
let (qu, neg_qu) = if P::ATE_LOOP_COUNT_1_IS_NEGATIVE {
(-r_affine, r_affine)
} else {
(r_affine, -r_affine)
};
r = G2HomProjective::<P> {
x: qu.x,
y: qu.y,
z: P::Fp::one(),
};
ell_coeffs_1.push(r.clone().add_in_place(&q));
let mut ell_coeffs_2 = vec![];
for bit in P::ATE_LOOP_COUNT_2.iter().rev().skip(1) {
ell_coeffs_2.push(r.double_in_place());
match bit {
1 => ell_coeffs_2.push(r.add_in_place(&qu)),
-1 => ell_coeffs_2.push(r.add_in_place(&neg_qu)),
_ => continue,
}
}
Self {
ell_coeffs_1,
ell_coeffs_2,
infinity: false,
}
}
}
impl<'a, P: BW6Config> From<&'a G2Affine<P>> for G2Prepared<P> {
fn from(q: &'a G2Affine<P>) -> Self {
(*q).into()
}
}
impl<'a, P: BW6Config> From<&'a G2Projective<P>> for G2Prepared<P> {
fn from(q: &'a G2Projective<P>) -> Self {
q.into_affine().into()
}
}
impl<P: BW6Config> From<G2Projective<P>> for G2Prepared<P> {
fn from(q: G2Projective<P>) -> Self {
q.into_affine().into()
}
}
impl<P: BW6Config> G2Prepared<P> {
pub fn is_zero(&self) -> bool {
self.infinity
}
}
impl<P: BW6Config> G2HomProjective<P> {
pub fn double_in_place(&mut self) -> (P::Fp, P::Fp, P::Fp) {
let a = self.x * &self.y;
let b = self.y.square();
let b4 = b.double().double();
let c = self.z.square();
let e = P::G2Config::COEFF_B * &(c.double() + &c);
let f = e.double() + &e;
let g = b + &f;
let h = (self.y + &self.z).square() - &(b + &c);
let i = e - &b;
let j = self.x.square();
let e2_square = e.double().square();
self.x = a.double() * &(b - &f);
self.y = g.square() - &(e2_square.double() + &e2_square);
self.z = b4 * &h;
match P::TWIST_TYPE {
TwistType::M => (i, j.double() + &j, -h),
TwistType::D => (-h, j.double() + &j, i),
}
}
pub fn add_in_place(&mut self, q: &G2Affine<P>) -> (P::Fp, P::Fp, P::Fp) {
let theta = self.y - &(q.y * &self.z);
let lambda = self.x - &(q.x * &self.z);
let c = theta.square();
let d = lambda.square();
let e = lambda * &d;
let f = self.z * &c;
let g = self.x * &d;
let h = e + &f - &g.double();
self.x = lambda * &h;
self.y = theta * &(g - &h) - &(e * &self.y);
self.z *= &e;
let j = theta * &q.x - &(lambda * &q.y);
match P::TWIST_TYPE {
TwistType::M => (j, -theta, lambda),
TwistType::D => (lambda, -theta, j),
}
}
}