ark_ec/models/mnt6/
mod.rsuse crate::{
models::{short_weierstrass::SWCurveConfig, CurveConfig},
pairing::{MillerLoopOutput, Pairing, PairingOutput},
};
use ark_ff::{
fp3::{Fp3, Fp3Config},
fp6_2over3::{Fp6, Fp6Config},
AdditiveGroup, CyclotomicMultSubgroup, Field, PrimeField,
};
use educe::Educe;
use itertools::Itertools;
use num_traits::{One, Zero};
use ark_std::{marker::PhantomData, vec::*};
#[cfg(feature = "parallel")]
use rayon::prelude::*;
pub mod g1;
pub mod g2;
use self::g2::{AteAdditionCoefficients, AteDoubleCoefficients, G2ProjectiveExtended};
pub use self::{
g1::{G1Affine, G1Prepared, G1Projective},
g2::{G2Affine, G2Prepared, G2Projective},
};
pub type GT<P> = Fp6<P>;
pub trait MNT6Config: 'static + Sized {
const TWIST: Fp3<Self::Fp3Config>;
const TWIST_COEFF_A: Fp3<Self::Fp3Config>;
const ATE_LOOP_COUNT: &'static [i8];
const ATE_IS_LOOP_COUNT_NEG: bool;
const FINAL_EXPONENT_LAST_CHUNK_1: <Self::Fp as PrimeField>::BigInt;
const FINAL_EXPONENT_LAST_CHUNK_W0_IS_NEG: bool;
const FINAL_EXPONENT_LAST_CHUNK_ABS_OF_W0: <Self::Fp as PrimeField>::BigInt;
type Fp: PrimeField + Into<<Self::Fp as PrimeField>::BigInt>;
type Fr: PrimeField + Into<<Self::Fr as PrimeField>::BigInt>;
type Fp3Config: Fp3Config<Fp = Self::Fp>;
type Fp6Config: Fp6Config<Fp3Config = Self::Fp3Config>;
type G1Config: SWCurveConfig<BaseField = Self::Fp, ScalarField = Self::Fr>;
type G2Config: SWCurveConfig<
BaseField = Fp3<Self::Fp3Config>,
ScalarField = <Self::G1Config as CurveConfig>::ScalarField,
>;
fn multi_miller_loop(
a: impl IntoIterator<Item = impl Into<G1Prepared<Self>>>,
b: impl IntoIterator<Item = impl Into<G2Prepared<Self>>>,
) -> MillerLoopOutput<MNT6<Self>> {
let pairs = a
.into_iter()
.zip_eq(b)
.map(|(a, b)| (a.into(), b.into()))
.collect::<Vec<_>>();
let result = ark_std::cfg_into_iter!(pairs)
.map(|(a, b)| MNT6::<Self>::ate_miller_loop(&a, &b))
.product();
MillerLoopOutput(result)
}
fn final_exponentiation(f: MillerLoopOutput<MNT6<Self>>) -> Option<PairingOutput<MNT6<Self>>> {
let value = f.0;
let value_inv = value.inverse()?;
let value_to_first_chunk =
MNT6::<Self>::final_exponentiation_first_chunk(&value, &value_inv);
let value_inv_to_first_chunk =
MNT6::<Self>::final_exponentiation_first_chunk(&value_inv, &value);
let result = MNT6::<Self>::final_exponentiation_last_chunk(
&value_to_first_chunk,
&value_inv_to_first_chunk,
);
Some(PairingOutput(result))
}
}
#[derive(Educe)]
#[educe(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub struct MNT6<P: MNT6Config>(PhantomData<fn() -> P>);
impl<P: MNT6Config> MNT6<P> {
fn doubling_for_flipped_miller_loop(
r: &G2ProjectiveExtended<P>,
) -> (G2ProjectiveExtended<P>, AteDoubleCoefficients<P>) {
let a = r.t.square();
let b = r.x.square();
let c = r.y.square();
let d = c.square();
let e = (r.x + &c).square() - &b - &d;
let f = (b + &b + &b) + &(P::TWIST_COEFF_A * &a);
let g = f.square();
let d_eight = d.double().double().double();
let e2 = e.double();
let x = g - &e2.double();
let y = -d_eight + &(f * &(e2 - &x));
let z = (r.y + &r.z).square() - &c - &r.z.square();
let t = z.square();
let r2 = G2ProjectiveExtended { x, y, z, t };
let coeff = AteDoubleCoefficients {
c_h: (r2.z + &r.t).square() - &r2.t - &a,
c_4c: c + &c + &c + &c,
c_j: (f + &r.t).square() - &g - &a,
c_l: (f + &r.x).square() - &g - &b,
};
(r2, coeff)
}
fn mixed_addition_for_flipper_miller_loop(
x: &Fp3<P::Fp3Config>,
y: &Fp3<P::Fp3Config>,
r: &G2ProjectiveExtended<P>,
) -> (G2ProjectiveExtended<P>, AteAdditionCoefficients<P>) {
let a = y.square();
let b = r.t * x;
let d = ((r.z + y).square() - &a - &r.t) * &r.t;
let h = b - &r.x;
let i = h.square();
let e = i + &i + &i + &i;
let j = h * &e;
let v = r.x * &e;
let ry2 = r.y.double();
let l1 = d - &ry2;
let x = l1.square() - &j - &(v + &v);
let y = l1 * &(v - &x) - &(j * &ry2);
let z = (r.z + &h).square() - &r.t - &i;
let t = z.square();
let r2 = G2ProjectiveExtended { x, y, z, t };
let coeff = AteAdditionCoefficients { c_l1: l1, c_rz: z };
(r2, coeff)
}
pub fn ate_miller_loop(p: &G1Prepared<P>, q: &G2Prepared<P>) -> Fp6<P::Fp6Config> {
let l1_coeff = Fp3::new(p.x, P::Fp::zero(), P::Fp::zero()) - &q.x_over_twist;
let mut f = <Fp6<P::Fp6Config>>::one();
let mut add_idx: usize = 0;
let y_over_twist_neg = -q.y_over_twist;
assert_eq!(P::ATE_LOOP_COUNT.len() - 1, q.double_coefficients.len());
for (bit, dc) in P::ATE_LOOP_COUNT.iter().skip(1).zip(&q.double_coefficients) {
let g_rr_at_p = Fp6::new(
dc.c_l - &dc.c_4c - &(dc.c_j * &p.x_twist),
dc.c_h * &p.y_twist,
);
f = f.square() * &g_rr_at_p;
let g_rq_at_p = if *bit == 1 {
let ac = &q.addition_coefficients[add_idx];
add_idx += 1;
Fp6::new(
ac.c_rz * &p.y_twist,
-(q.y_over_twist * &ac.c_rz + &(l1_coeff * &ac.c_l1)),
)
} else if *bit == -1 {
let ac = &q.addition_coefficients[add_idx];
add_idx += 1;
Fp6::new(
ac.c_rz * &p.y_twist,
-(y_over_twist_neg * &ac.c_rz + &(l1_coeff * &ac.c_l1)),
)
} else if *bit == 0 {
continue;
} else {
unreachable!();
};
f *= &g_rq_at_p;
}
if P::ATE_IS_LOOP_COUNT_NEG {
let ac = &q.addition_coefficients[add_idx];
let g_rnegr_at_p = Fp6::new(
ac.c_rz * &p.y_twist,
-(q.y_over_twist * &ac.c_rz + &(l1_coeff * &ac.c_l1)),
);
f = (f * &g_rnegr_at_p).inverse().unwrap();
}
f
}
fn final_exponentiation_first_chunk(
elt: &Fp6<P::Fp6Config>,
elt_inv: &Fp6<P::Fp6Config>,
) -> Fp6<P::Fp6Config> {
let mut elt_q3 = *elt;
elt_q3.cyclotomic_inverse_in_place();
let elt_q3_over_elt = elt_q3 * elt_inv;
let mut alpha = elt_q3_over_elt;
alpha.frobenius_map_in_place(1);
alpha * &elt_q3_over_elt
}
fn final_exponentiation_last_chunk(
elt: &Fp6<P::Fp6Config>,
elt_inv: &Fp6<P::Fp6Config>,
) -> Fp6<P::Fp6Config> {
let elt_clone = *elt;
let elt_inv_clone = *elt_inv;
let mut elt_q = *elt;
elt_q.frobenius_map_in_place(1);
let w1_part = elt_q.cyclotomic_exp(P::FINAL_EXPONENT_LAST_CHUNK_1);
let w0_part = if P::FINAL_EXPONENT_LAST_CHUNK_W0_IS_NEG {
elt_inv_clone.cyclotomic_exp(P::FINAL_EXPONENT_LAST_CHUNK_ABS_OF_W0)
} else {
elt_clone.cyclotomic_exp(P::FINAL_EXPONENT_LAST_CHUNK_ABS_OF_W0)
};
w1_part * &w0_part
}
}
impl<P: MNT6Config> Pairing for MNT6<P> {
type BaseField = <P::G1Config as CurveConfig>::BaseField;
type ScalarField = <P::G1Config as CurveConfig>::ScalarField;
type G1 = G1Projective<P>;
type G1Affine = G1Affine<P>;
type G1Prepared = G1Prepared<P>;
type G2 = G2Projective<P>;
type G2Affine = G2Affine<P>;
type G2Prepared = G2Prepared<P>;
type TargetField = Fp6<P::Fp6Config>;
fn multi_miller_loop(
a: impl IntoIterator<Item = impl Into<Self::G1Prepared>>,
b: impl IntoIterator<Item = impl Into<Self::G2Prepared>>,
) -> MillerLoopOutput<Self> {
P::multi_miller_loop(a, b)
}
fn final_exponentiation(f: MillerLoopOutput<Self>) -> Option<PairingOutput<Self>> {
P::final_exponentiation(f)
}
}