ark_ec/models/twisted_edwards/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
use ark_serialize::{
CanonicalDeserialize, CanonicalDeserializeWithFlags, CanonicalSerialize,
CanonicalSerializeWithFlags, Compress, SerializationError, Valid, Validate,
};
use ark_std::io::{Read, Write};
use crate::{scalar_mul::variable_base::VariableBaseMSM, AffineRepr};
use num_traits::Zero;
use ark_ff::{fields::Field, AdditiveGroup};
mod affine;
pub use affine::*;
mod group;
pub use group::*;
mod serialization_flags;
pub use serialization_flags::*;
/// Constants and convenience functions that collectively define the [Twisted Edwards model](https://www.hyperelliptic.org/EFD/g1p/auto-twisted.html)
/// of the curve. In this model, the curve equation is
/// `a * x² + y² = 1 + d * x² * y²`, for constants `a` and `d`.
pub trait TECurveConfig: super::CurveConfig {
/// Coefficient `a` of the curve equation.
const COEFF_A: Self::BaseField;
/// Coefficient `d` of the curve equation.
const COEFF_D: Self::BaseField;
/// Generator of the prime-order subgroup.
const GENERATOR: Affine<Self>;
/// Model parameters for the Montgomery curve that is birationally
/// equivalent to this curve.
type MontCurveConfig: MontCurveConfig<BaseField = Self::BaseField>;
/// Helper method for computing `elem * Self::COEFF_A`.
///
/// The default implementation should be overridden only if
/// the product can be computed faster than standard field multiplication
/// (eg: via doubling if `COEFF_A == 2`, or if `COEFF_A.is_zero()`).
#[inline(always)]
fn mul_by_a(elem: Self::BaseField) -> Self::BaseField {
elem * Self::COEFF_A
}
/// Checks that the current point is in the prime order subgroup given
/// the point on the curve.
fn is_in_correct_subgroup_assuming_on_curve(item: &Affine<Self>) -> bool {
Self::mul_affine(item, Self::ScalarField::characteristic()).is_zero()
}
/// Performs cofactor clearing.
/// The default method is simply to multiply by the cofactor.
/// For some curve families though, it is sufficient to multiply
/// by a smaller scalar.
fn clear_cofactor(item: &Affine<Self>) -> Affine<Self> {
item.mul_by_cofactor()
}
/// Default implementation of group multiplication for projective
/// coordinates
fn mul_projective(base: &Projective<Self>, scalar: &[u64]) -> Projective<Self> {
let mut res = Projective::<Self>::zero();
for b in ark_ff::BitIteratorBE::without_leading_zeros(scalar) {
res.double_in_place();
if b {
res += base;
}
}
res
}
/// Default implementation of group multiplication for affine
/// coordinates
fn mul_affine(base: &Affine<Self>, scalar: &[u64]) -> Projective<Self> {
let mut res = Projective::<Self>::zero();
for b in ark_ff::BitIteratorBE::without_leading_zeros(scalar) {
res.double_in_place();
if b {
res += base
}
}
res
}
/// Default implementation for multi scalar multiplication
fn msm(
bases: &[Affine<Self>],
scalars: &[Self::ScalarField],
) -> Result<Projective<Self>, usize> {
(bases.len() == scalars.len())
.then(|| VariableBaseMSM::msm_unchecked(bases, scalars))
.ok_or(bases.len().min(scalars.len()))
}
/// If uncompressed, serializes both x and y coordinates.
/// If compressed, serializes y coordinate with a bit to encode whether x is positive.
#[inline]
fn serialize_with_mode<W: Write>(
item: &Affine<Self>,
mut writer: W,
compress: ark_serialize::Compress,
) -> Result<(), SerializationError> {
let flags = TEFlags::from_x_coordinate(item.x);
match compress {
Compress::Yes => item.y.serialize_with_flags(writer, flags),
Compress::No => {
item.x.serialize_uncompressed(&mut writer)?;
item.y.serialize_uncompressed(&mut writer)
},
}
}
/// If `validate` is `Yes`, calls `check()` to make sure the element is valid.
///
/// Uses `Affine::get_xs_from_y_unchecked()` for the compressed version.
fn deserialize_with_mode<R: Read>(
mut reader: R,
compress: Compress,
validate: Validate,
) -> Result<Affine<Self>, SerializationError> {
let (x, y) = match compress {
Compress::Yes => {
let (y, flags): (_, TEFlags) =
CanonicalDeserializeWithFlags::deserialize_with_flags(reader)?;
let (x, neg_x) = Affine::<Self>::get_xs_from_y_unchecked(y)
.ok_or(SerializationError::InvalidData)?;
if flags.is_negative() {
(neg_x, y)
} else {
(x, y)
}
},
Compress::No => {
let x: Self::BaseField =
CanonicalDeserialize::deserialize_uncompressed(&mut reader)?;
let y: Self::BaseField =
CanonicalDeserialize::deserialize_uncompressed(&mut reader)?;
(x, y)
},
};
let point = Affine::<Self>::new_unchecked(x, y);
if let Validate::Yes = validate {
point.check()?;
}
Ok(point)
}
#[inline]
fn serialized_size(compress: Compress) -> usize {
let zero = Self::BaseField::zero();
match compress {
Compress::Yes => zero.serialized_size_with_flags::<TEFlags>(),
Compress::No => zero.uncompressed_size() + zero.uncompressed_size(),
}
}
}
/// Constants and convenience functions that collectively define the [Montgomery model](https://www.hyperelliptic.org/EFD/g1p/auto-montgom.html)
/// of the curve. In this model, the curve equation is
/// `b * y² = x³ + a * x² + x`, for constants `a` and `b`.
pub trait MontCurveConfig: super::CurveConfig {
/// Coefficient `a` of the curve equation.
const COEFF_A: Self::BaseField;
/// Coefficient `b` of the curve equation.
const COEFF_B: Self::BaseField;
/// Model parameters for the Twisted Edwards curve that is birationally
/// equivalent to this curve.
type TECurveConfig: TECurveConfig<BaseField = Self::BaseField>;
}
//////////////////////////////////////////////////////////////////////////////