ark_ec/
pairing.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
use ark_ff::{AdditiveGroup, CyclotomicMultSubgroup, Field, One, PrimeField};
use ark_serialize::{
    CanonicalDeserialize, CanonicalSerialize, Compress, SerializationError, Valid, Validate,
};
use ark_std::{
    borrow::Borrow,
    fmt::{Debug, Display, Formatter, Result as FmtResult},
    io::{Read, Write},
    ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign},
    rand::{
        distributions::{Distribution, Standard},
        Rng,
    },
    vec::*,
    UniformRand, Zero,
};
use educe::Educe;
use zeroize::Zeroize;

use crate::{AffineRepr, CurveGroup, PrimeGroup, VariableBaseMSM};

/// Collection of types (mainly fields and curves) that together describe
/// how to compute a pairing over a pairing-friendly curve.
pub trait Pairing: Sized + 'static + Copy + Debug + Sync + Send + Eq {
    /// This is the base field of the G1 group and base prime field of G2.
    type BaseField: PrimeField;

    /// This is the scalar field of the G1/G2 groups.
    type ScalarField: PrimeField;

    /// An element in G1.
    type G1: CurveGroup<ScalarField = Self::ScalarField, Affine = Self::G1Affine>
        + From<Self::G1Affine>
        + Into<Self::G1Affine>
        // needed due to https://github.com/rust-lang/rust/issues/69640
        + MulAssign<Self::ScalarField>;

    type G1Affine: AffineRepr<Group = Self::G1, ScalarField = Self::ScalarField>
        + From<Self::G1>
        + Into<Self::G1>
        + Into<Self::G1Prepared>;

    /// A G1 element that has been preprocessed for use in a pairing.
    type G1Prepared: Default
        + Clone
        + Send
        + Sync
        + Debug
        + CanonicalSerialize
        + CanonicalDeserialize
        + for<'a> From<&'a Self::G1>
        + for<'a> From<&'a Self::G1Affine>
        + From<Self::G1>
        + From<Self::G1Affine>;

    /// An element of G2.
    type G2: CurveGroup<ScalarField = Self::ScalarField, Affine = Self::G2Affine>
        + From<Self::G2Affine>
        + Into<Self::G2Affine>
        // needed due to https://github.com/rust-lang/rust/issues/69640
        + MulAssign<Self::ScalarField>;

    /// The affine representation of an element in G2.
    type G2Affine: AffineRepr<Group = Self::G2, ScalarField = Self::ScalarField>
        + From<Self::G2>
        + Into<Self::G2>
        + Into<Self::G2Prepared>;

    /// A G2 element that has been preprocessed for use in a pairing.
    type G2Prepared: Default
        + Clone
        + Send
        + Sync
        + Debug
        + CanonicalSerialize
        + CanonicalDeserialize
        + for<'a> From<&'a Self::G2>
        + for<'a> From<&'a Self::G2Affine>
        + From<Self::G2>
        + From<Self::G2Affine>;

    /// The extension field that hosts the target group of the pairing.
    type TargetField: CyclotomicMultSubgroup;

    /// Computes the product of Miller loops for some number of (G1, G2) pairs.
    fn multi_miller_loop(
        a: impl IntoIterator<Item = impl Into<Self::G1Prepared>>,
        b: impl IntoIterator<Item = impl Into<Self::G2Prepared>>,
    ) -> MillerLoopOutput<Self>;

    /// Computes the Miller loop over `a` and `b`.
    fn miller_loop(
        a: impl Into<Self::G1Prepared>,
        b: impl Into<Self::G2Prepared>,
    ) -> MillerLoopOutput<Self> {
        Self::multi_miller_loop([a], [b])
    }

    /// Performs final exponentiation of the result of a `Self::multi_miller_loop`.
    #[must_use]
    fn final_exponentiation(mlo: MillerLoopOutput<Self>) -> Option<PairingOutput<Self>>;

    /// Computes a "product" of pairings.
    fn multi_pairing(
        a: impl IntoIterator<Item = impl Into<Self::G1Prepared>>,
        b: impl IntoIterator<Item = impl Into<Self::G2Prepared>>,
    ) -> PairingOutput<Self> {
        Self::final_exponentiation(Self::multi_miller_loop(a, b)).unwrap()
    }

    /// Performs multiple pairing operations
    fn pairing(
        p: impl Into<Self::G1Prepared>,
        q: impl Into<Self::G2Prepared>,
    ) -> PairingOutput<Self> {
        Self::multi_pairing([p], [q])
    }
}

/// Represents the target group of a pairing. This struct is a
/// wrapper around the field that the target group is embedded in.
#[derive(Educe)]
#[educe(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[must_use]
pub struct PairingOutput<P: Pairing>(pub P::TargetField);

impl<P: Pairing> Default for PairingOutput<P> {
    fn default() -> Self {
        // Default value is AdditiveGroup::ZERO (i.e., P::TargetField::one())
        Self::ZERO
    }
}

impl<P: Pairing> CanonicalSerialize for PairingOutput<P> {
    #[allow(unused_qualifications)]
    #[inline]
    fn serialize_with_mode<W: Write>(
        &self,
        writer: W,
        compress: Compress,
    ) -> Result<(), SerializationError> {
        self.0.serialize_with_mode(writer, compress)
    }

    #[inline]
    fn serialized_size(&self, compress: Compress) -> usize {
        self.0.serialized_size(compress)
    }
}

impl<P: Pairing> Valid for PairingOutput<P> {
    fn check(&self) -> Result<(), SerializationError> {
        if self.0.pow(P::ScalarField::characteristic()).is_one() {
            Ok(())
        } else {
            Err(SerializationError::InvalidData)
        }
    }
}

impl<P: Pairing> CanonicalDeserialize for PairingOutput<P> {
    fn deserialize_with_mode<R: Read>(
        reader: R,
        compress: Compress,
        validate: Validate,
    ) -> Result<Self, SerializationError> {
        let f = P::TargetField::deserialize_with_mode(reader, compress, validate).map(Self)?;
        if let Validate::Yes = validate {
            f.check()?;
        }
        Ok(f)
    }
}

impl<P: Pairing> Display for PairingOutput<P> {
    fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
        write!(f, "{}", self.0)
    }
}

impl<P: Pairing> Zero for PairingOutput<P> {
    /// The identity element, or "zero", of the group is the identity element of the multiplicative group of the underlying field, i.e., `P::TargetField::one()`.
    fn zero() -> Self {
        Self(P::TargetField::one())
    }

    fn is_zero(&self) -> bool {
        self.0.is_one()
    }
}

impl<'a, P: Pairing> Add<&'a Self> for PairingOutput<P> {
    type Output = Self;

    #[inline]
    fn add(mut self, other: &'a Self) -> Self {
        self += other;
        self
    }
}

impl<'a, P: Pairing> AddAssign<&'a Self> for PairingOutput<P> {
    fn add_assign(&mut self, other: &'a Self) {
        self.0 *= other.0;
    }
}

impl<'a, P: Pairing> SubAssign<&'a Self> for PairingOutput<P> {
    fn sub_assign(&mut self, other: &'a Self) {
        self.0 *= other.0.cyclotomic_inverse().unwrap();
    }
}

impl<'a, P: Pairing> Sub<&'a Self> for PairingOutput<P> {
    type Output = Self;

    #[inline]
    fn sub(mut self, other: &'a Self) -> Self {
        self -= other;
        self
    }
}

ark_ff::impl_additive_ops_from_ref!(PairingOutput, Pairing);

impl<P: Pairing, T: Borrow<P::ScalarField>> MulAssign<T> for PairingOutput<P> {
    fn mul_assign(&mut self, other: T) {
        *self = self.mul_bigint(other.borrow().into_bigint());
    }
}

impl<P: Pairing, T: Borrow<P::ScalarField>> Mul<T> for PairingOutput<P> {
    type Output = Self;

    fn mul(self, other: T) -> Self {
        self.mul_bigint(other.borrow().into_bigint())
    }
}

impl<P: Pairing> Zeroize for PairingOutput<P> {
    fn zeroize(&mut self) {
        self.0.zeroize()
    }
}

impl<P: Pairing> Neg for PairingOutput<P> {
    type Output = Self;

    #[inline]
    fn neg(self) -> Self {
        Self(self.0.cyclotomic_inverse().unwrap())
    }
}

impl<P: Pairing> Distribution<PairingOutput<P>> for Standard {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> PairingOutput<P> {
        // Sample a random G1 element
        let g1 = P::G1::rand(rng);
        // Sample a random G2 element
        let g2 = P::G2::rand(rng);
        P::pairing(g1, g2)
    }
}

impl<P: Pairing> AdditiveGroup for PairingOutput<P> {
    type Scalar = P::ScalarField;

    const ZERO: Self = Self(P::TargetField::ONE);

    fn double_in_place(&mut self) -> &mut Self {
        self.0.cyclotomic_square_in_place();
        self
    }
}

impl<P: Pairing> PrimeGroup for PairingOutput<P> {
    type ScalarField = P::ScalarField;

    fn generator() -> Self {
        // TODO: hardcode these values.
        // Sample a random G1 element
        let g1 = P::G1::generator();
        // Sample a random G2 element
        let g2 = P::G2::generator();
        P::pairing(g1.into(), g2.into())
    }

    fn mul_bigint(&self, other: impl AsRef<[u64]>) -> Self {
        Self(self.0.cyclotomic_exp(other.as_ref()))
    }

    fn mul_bits_be(&self, other: impl Iterator<Item = bool>) -> Self {
        // Convert back from bits to [u64] limbs
        let other = other
            .collect::<Vec<_>>()
            .chunks(64)
            .map(|chunk| {
                chunk
                    .iter()
                    .enumerate()
                    .fold(0, |r, (i, bit)| r | u64::from(*bit) << i)
            })
            .collect::<Vec<_>>();
        Self(self.0.cyclotomic_exp(&other))
    }
}

impl<P: Pairing> crate::ScalarMul for PairingOutput<P> {
    type MulBase = Self;
    const NEGATION_IS_CHEAP: bool = P::TargetField::INVERSE_IS_FAST;

    fn batch_convert_to_mul_base(bases: &[Self]) -> Vec<Self::MulBase> {
        bases.to_vec()
    }
}

impl<P: Pairing> VariableBaseMSM for PairingOutput<P> {}

/// Represents the output of the Miller loop of the pairing.
#[derive(Educe)]
#[educe(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
#[must_use]
pub struct MillerLoopOutput<P: Pairing>(pub P::TargetField);

impl<P: Pairing> Mul<P::ScalarField> for MillerLoopOutput<P> {
    type Output = Self;

    fn mul(self, other: P::ScalarField) -> Self {
        Self(self.0.pow(other.into_bigint()))
    }
}

/// Preprocesses a G1 element for use in a pairing.
pub fn prepare_g1<E: Pairing>(g: impl Into<E::G1Affine>) -> E::G1Prepared {
    let g: E::G1Affine = g.into();
    E::G1Prepared::from(g)
}

/// Preprocesses a G2 element for use in a pairing.
pub fn prepare_g2<E: Pairing>(g: impl Into<E::G2Affine>) -> E::G2Prepared {
    let g: E::G2Affine = g.into();
    E::G2Prepared::from(g)
}