ark_ec/scalar_mul/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
pub mod glv;
pub mod wnaf;
pub mod variable_base;
use crate::{
short_weierstrass::{Affine, Projective, SWCurveConfig},
PrimeGroup,
};
use ark_ff::{AdditiveGroup, BigInteger, PrimeField, Zero};
use ark_std::{
cfg_iter, cfg_iter_mut,
ops::{Add, AddAssign, Mul, Neg, Sub, SubAssign},
vec::*,
};
#[cfg(feature = "parallel")]
use rayon::prelude::*;
/// The result of this function is only approximately `ln(a)`
/// [`Explanation of usage`]
///
/// [`Explanation of usage`]: https://github.com/scipr-lab/zexe/issues/79#issue-556220473
fn ln_without_floats(a: usize) -> usize {
// log2(a) * ln(2)
(ark_std::log2(a) * 69 / 100) as usize
}
/// Standard double-and-add method for multiplication by a scalar.
#[inline(always)]
pub fn sw_double_and_add_affine<P: SWCurveConfig>(
base: &Affine<P>,
scalar: impl AsRef<[u64]>,
) -> Projective<P> {
let mut res = Projective::<P>::zero();
for b in ark_ff::BitIteratorBE::without_leading_zeros(scalar) {
res.double_in_place();
if b {
res += base
}
}
res
}
/// Standard double-and-add method for multiplication by a scalar.
#[inline(always)]
pub fn sw_double_and_add_projective<P: SWCurveConfig>(
base: &Projective<P>,
scalar: impl AsRef<[u64]>,
) -> Projective<P> {
let mut res = Projective::<P>::zero();
for b in ark_ff::BitIteratorBE::without_leading_zeros(scalar) {
res.double_in_place();
if b {
res += base
}
}
res
}
pub trait ScalarMul:
PrimeGroup
+ Add<Self::MulBase, Output = Self>
+ AddAssign<Self::MulBase>
+ for<'a> Add<&'a Self::MulBase, Output = Self>
+ for<'a> AddAssign<&'a Self::MulBase>
+ Sub<Self::MulBase, Output = Self>
+ SubAssign<Self::MulBase>
+ for<'a> Sub<&'a Self::MulBase, Output = Self>
+ for<'a> SubAssign<&'a Self::MulBase>
+ From<Self::MulBase>
{
type MulBase: Send
+ Sync
+ Copy
+ Eq
+ core::hash::Hash
+ Mul<Self::ScalarField, Output = Self>
+ for<'a> Mul<&'a Self::ScalarField, Output = Self>
+ Neg<Output = Self::MulBase>
+ From<Self>;
const NEGATION_IS_CHEAP: bool;
fn batch_convert_to_mul_base(bases: &[Self]) -> Vec<Self::MulBase>;
/// Compute the vector v[0].G, v[1].G, ..., v[n-1].G, given:
/// - an element `g`
/// - a list `v` of n scalars
///
/// # Example
/// ```
/// use ark_std::{One, UniformRand};
/// use ark_ec::pairing::Pairing;
/// use ark_test_curves::bls12_381::G1Projective as G;
/// use ark_test_curves::bls12_381::Fr;
/// use ark_ec::scalar_mul::ScalarMul;
///
/// // Compute G, s.G, s^2.G, ..., s^9.G
/// let mut rng = ark_std::test_rng();
/// let max_degree = 10;
/// let s = Fr::rand(&mut rng);
/// let g = G::rand(&mut rng);
/// let mut powers_of_s = vec![Fr::one()];
/// let mut cur = s;
/// for _ in 0..max_degree {
/// powers_of_s.push(cur);
/// cur *= &s;
/// }
/// let powers_of_g = g.batch_mul(&powers_of_s);
/// let naive_powers_of_g: Vec<G> = powers_of_s.iter().map(|e| g * e).collect();
/// assert_eq!(powers_of_g, naive_powers_of_g);
/// ```
fn batch_mul(self, v: &[Self::ScalarField]) -> Vec<Self::MulBase> {
let table = BatchMulPreprocessing::new(self, v.len());
Self::batch_mul_with_preprocessing(&table, v)
}
/// Compute the vector v[0].G, v[1].G, ..., v[n-1].G, given:
/// - an element `g`
/// - a list `v` of n scalars
///
/// This method allows the user to provide a precomputed table of multiples of `g`.
/// A more ergonomic way to call this would be to use [`BatchMulPreprocessing::batch_mul`].
///
/// # Example
/// ```
/// use ark_std::{One, UniformRand};
/// use ark_ec::pairing::Pairing;
/// use ark_test_curves::bls12_381::G1Projective as G;
/// use ark_test_curves::bls12_381::Fr;
/// use ark_ec::scalar_mul::*;
///
/// // Compute G, s.G, s^2.G, ..., s^9.G
/// let mut rng = ark_std::test_rng();
/// let max_degree = 10;
/// let s = Fr::rand(&mut rng);
/// let g = G::rand(&mut rng);
/// let mut powers_of_s = vec![Fr::one()];
/// let mut cur = s;
/// for _ in 0..max_degree {
/// powers_of_s.push(cur);
/// cur *= &s;
/// }
/// let table = BatchMulPreprocessing::new(g, powers_of_s.len());
/// let powers_of_g = G::batch_mul_with_preprocessing(&table, &powers_of_s);
/// let powers_of_g_2 = table.batch_mul(&powers_of_s);
/// let naive_powers_of_g: Vec<G> = powers_of_s.iter().map(|e| g * e).collect();
/// assert_eq!(powers_of_g, naive_powers_of_g);
/// assert_eq!(powers_of_g_2, naive_powers_of_g);
/// ```
fn batch_mul_with_preprocessing(
table: &BatchMulPreprocessing<Self>,
v: &[Self::ScalarField],
) -> Vec<Self::MulBase> {
table.batch_mul(v)
}
}
/// Preprocessing used internally for batch scalar multiplication via [`ScalarMul::batch_mul`].
/// - `window` is the window size used for the precomputation
/// - `max_scalar_size` is the maximum size of the scalars that will be multiplied
/// - `table` is the precomputed table of multiples of `base`
pub struct BatchMulPreprocessing<T: ScalarMul> {
pub window: usize,
pub max_scalar_size: usize,
pub table: Vec<Vec<T::MulBase>>,
}
impl<T: ScalarMul> BatchMulPreprocessing<T> {
pub fn new(base: T, num_scalars: usize) -> Self {
let scalar_size = T::ScalarField::MODULUS_BIT_SIZE as usize;
Self::with_num_scalars_and_scalar_size(base, num_scalars, scalar_size)
}
pub fn with_num_scalars_and_scalar_size(
base: T,
num_scalars: usize,
max_scalar_size: usize,
) -> Self {
let window = Self::compute_window_size(num_scalars);
let in_window = 1 << window;
let outerc = (max_scalar_size + window - 1) / window;
let last_in_window = 1 << (max_scalar_size - (outerc - 1) * window);
let mut multiples_of_g = vec![vec![T::zero(); in_window]; outerc];
let mut g_outer = base;
let mut g_outers = Vec::with_capacity(outerc);
for _ in 0..outerc {
g_outers.push(g_outer);
for _ in 0..window {
g_outer.double_in_place();
}
}
cfg_iter_mut!(multiples_of_g)
.enumerate()
.take(outerc)
.zip(g_outers)
.for_each(|((outer, multiples_of_g), g_outer)| {
let cur_in_window = if outer == outerc - 1 {
last_in_window
} else {
in_window
};
let mut g_inner = T::zero();
for inner in multiples_of_g.iter_mut().take(cur_in_window) {
*inner = g_inner;
g_inner += &g_outer;
}
});
let table = cfg_iter!(multiples_of_g)
.map(|s| T::batch_convert_to_mul_base(s))
.collect();
Self {
window,
max_scalar_size,
table,
}
}
pub fn compute_window_size(num_scalars: usize) -> usize {
if num_scalars < 32 {
3
} else {
ln_without_floats(num_scalars)
}
}
pub fn batch_mul(&self, v: &[T::ScalarField]) -> Vec<T::MulBase> {
let result: Vec<_> = cfg_iter!(v).map(|e| self.windowed_mul(e)).collect();
T::batch_convert_to_mul_base(&result)
}
fn windowed_mul(&self, scalar: &T::ScalarField) -> T {
let outerc = (self.max_scalar_size + self.window - 1) / self.window;
let modulus_size = T::ScalarField::MODULUS_BIT_SIZE as usize;
let scalar_val = scalar.into_bigint().to_bits_le();
let mut res = T::from(self.table[0][0]);
for outer in 0..outerc {
let mut inner = 0usize;
for i in 0..self.window {
if outer * self.window + i < modulus_size && scalar_val[outer * self.window + i] {
inner |= 1 << i;
}
}
res += &self.table[outer][inner];
}
res
}
}