1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
macro_rules! impl_prime_field_serializer {
    ($field: ident, $params: ident, $byte_size: expr) => {
        impl<P: $params> CanonicalSerializeWithFlags for $field<P> {
            fn serialize_with_flags<W: ark_std::io::Write, F: Flags>(
                &self,
                mut writer: W,
                flags: F,
            ) -> Result<(), SerializationError> {
                // All reasonable `Flags` should be less than 8 bits in size
                // (256 values are enough for anyone!)
                if F::BIT_SIZE > 8 {
                    return Err(SerializationError::NotEnoughSpace);
                }

                // Calculate the number of bytes required to represent a field element
                // serialized with `flags`. If `F::BIT_SIZE < 8`,
                // this is at most `$byte_size + 1`
                let output_byte_size = buffer_byte_size(P::MODULUS_BITS as usize + F::BIT_SIZE);

                // Write out `self` to a temporary buffer.
                // The size of the buffer is $byte_size + 1 because `F::BIT_SIZE`
                // is at most 8 bits.
                let mut bytes = [0u8; $byte_size + 1];
                self.write(&mut bytes[..$byte_size])?;

                // Mask out the bits of the last byte that correspond to the flag.
                bytes[output_byte_size - 1] |= flags.u8_bitmask();

                writer.write_all(&bytes[..output_byte_size])?;
                Ok(())
            }

            // Let `m = 8 * n` for some `n` be the smallest multiple of 8 greater
            // than `P::MODULUS_BITS`.
            // If `(m - P::MODULUS_BITS) >= F::BIT_SIZE` , then this method returns `n`;
            // otherwise, it returns `n + 1`.
            fn serialized_size_with_flags<F: Flags>(&self) -> usize {
                buffer_byte_size(P::MODULUS_BITS as usize + F::BIT_SIZE)
            }
        }

        impl<P: $params> CanonicalSerialize for $field<P> {
            #[inline]
            fn serialize<W: ark_std::io::Write>(
                &self,
                writer: W,
            ) -> Result<(), SerializationError> {
                self.serialize_with_flags(writer, EmptyFlags)
            }

            #[inline]
            fn serialized_size(&self) -> usize {
                self.serialized_size_with_flags::<EmptyFlags>()
            }
        }

        impl<P: $params> CanonicalDeserializeWithFlags for $field<P> {
            fn deserialize_with_flags<R: ark_std::io::Read, F: Flags>(
                mut reader: R,
            ) -> Result<(Self, F), SerializationError> {
                // All reasonable `Flags` should be less than 8 bits in size
                // (256 values are enough for anyone!)
                if F::BIT_SIZE > 8 {
                    return Err(SerializationError::NotEnoughSpace);
                }
                // Calculate the number of bytes required to represent a field element
                // serialized with `flags`. If `F::BIT_SIZE < 8`,
                // this is at most `$byte_size + 1`
                let output_byte_size = buffer_byte_size(P::MODULUS_BITS as usize + F::BIT_SIZE);

                let mut masked_bytes = [0; $byte_size + 1];
                reader.read_exact(&mut masked_bytes[..output_byte_size])?;

                let flags = F::from_u8_remove_flags(&mut masked_bytes[output_byte_size - 1])
                    .ok_or(SerializationError::UnexpectedFlags)?;

                Ok((Self::read(&masked_bytes[..])?, flags))
            }
        }

        impl<P: $params> CanonicalDeserialize for $field<P> {
            fn deserialize<R: ark_std::io::Read>(reader: R) -> Result<Self, SerializationError> {
                Self::deserialize_with_flags::<R, EmptyFlags>(reader).map(|(r, _)| r)
            }
        }
    };
}

macro_rules! impl_Fp {
    ($Fp:ident, $FpParameters:ident, $BigInteger:ident, $BigIntegerType:ty, $limbs:expr, $field_size:expr) => {
        pub trait $FpParameters: FpParameters<BigInt = $BigIntegerType> {}

        /// Represents an element of the prime field F_p, where `p == P::MODULUS`.
        /// This type can represent elements in any field of size at most
        #[doc = $field_size]
        /// bits.
        #[derive(Derivative)]
        #[derivative(
            Default(bound = ""),
            Hash(bound = ""),
            Clone(bound = ""),
            Copy(bound = ""),
            Debug(bound = ""),
            PartialEq(bound = ""),
            Eq(bound = "")
        )]
        pub struct $Fp<P>(
            pub $BigIntegerType,
            #[derivative(Debug = "ignore")]
            #[doc(hidden)]
            pub PhantomData<P>,
        );

        impl<P> $Fp<P> {
            #[inline]
            pub const fn new(element: $BigIntegerType) -> Self {
                Self(element, PhantomData)
            }

            #[ark_ff_asm::unroll_for_loops]
            const fn const_is_zero(&self) -> bool {
                let mut is_zero = true;
                for i in 0..$limbs {
                    is_zero &= (self.0).0[i] == 0;
                }
                is_zero
            }

            const fn const_neg(self, modulus: $BigIntegerType) -> Self {
                if !self.const_is_zero() {
                    Self::new(Self::sub_noborrow(&modulus, &self.0))
                } else {
                    self
                }
            }

            /// Interpret a string of decimal numbers as a prime field element.
            /// Does not accept unnecessary leading zeroes or a blank string.
            /// For *internal* use only; please use the `field_new` macro instead
            /// of this method
            #[doc(hidden)]
            pub const fn const_from_str(limbs: &[u64], is_positive: bool, r2: $BigIntegerType, modulus: $BigIntegerType, inv: u64) -> Self {
                let mut repr = $BigInteger([0; $limbs]);
                let mut i = 0;
                while i < limbs.len() {
                    repr.0[i] = limbs[i];
                    i += 1;
                }
                let res = Self::const_from_repr(repr, r2, modulus, inv);
                if is_positive {
                    res
                } else {
                    res.const_neg(modulus)
                }
            }

            #[inline]
            pub(crate) const fn const_from_repr(repr: $BigIntegerType, r2: $BigIntegerType, modulus: $BigIntegerType, inv: u64) -> Self {
                let mut r = Self::new(repr);
                if r.const_is_zero() {
                    r
                } else {
                    r = r.const_mul(&$Fp(r2, PhantomData), modulus, inv);
                    r
                }
            }

            #[ark_ff_asm::unroll_for_loops]
            const fn mul_without_reduce(mut self, other: &Self, modulus: $BigIntegerType, inv: u64) -> Self {
                let mut r = [0u64; $limbs * 2];

                for i in 0..$limbs {
                    let mut carry = 0;
                    for j in 0..$limbs {
                        r[j + i] = mac_with_carry!(r[j + i], (self.0).0[i], (other.0).0[j], &mut carry);
                    }
                    r[$limbs + i] = carry;
                }
                // Montgomery reduction
                let mut _carry2 = 0;
                for i in 0..$limbs {
                    let k = r[i].wrapping_mul(inv);
                    let mut carry = 0;
                    mac_with_carry!(r[i], k, modulus.0[0], &mut carry);
                    for j in 1..$limbs {
                        r[j + i] = mac_with_carry!(r[j + i], k, modulus.0[j], &mut carry);
                    }
                    r[$limbs + i] = adc!(r[$limbs + i], _carry2, &mut carry);
                    _carry2 = carry;
                }

                for i in 0..$limbs {
                    (self.0).0[i] = r[$limbs + i];
                }
                self
            }

            #[ark_ff_asm::unroll_for_loops]
            const fn const_mul(mut self, other: &Self, modulus: $BigIntegerType, inv: u64) -> Self {
                self = self.mul_without_reduce(other, modulus, inv);
                self.const_reduce(modulus)
            }


            #[ark_ff_asm::unroll_for_loops]
            const fn const_is_valid(&self, modulus: $BigIntegerType) -> bool {
                for i in 0..$limbs {
                    if (self.0).0[($limbs - i - 1)] < modulus.0[($limbs - i - 1)] {
                        return true
                    } else if (self.0).0[($limbs - i - 1)] > modulus.0[($limbs - i - 1)] {
                        return false
                    }
                }
                false
            }

            #[inline]
            const fn const_reduce(mut self, modulus: $BigIntegerType) -> Self {
                if !self.const_is_valid(modulus) {
                    self.0 = Self::sub_noborrow(&self.0, &modulus);
                }
                self
            }

            #[ark_ff_asm::unroll_for_loops]
            // need unused assignment because the last iteration of the loop produces an assignment
            // to `borrow` that is unused.
            #[allow(unused_assignments)]
            const fn sub_noborrow(a: &$BigIntegerType, b: &$BigIntegerType) -> $BigInteger {
                let mut a = *a;
                let mut borrow = 0;
                for i in 0..$limbs {
                    a.0[i] = sbb!(a.0[i], b.0[i], &mut borrow);
                }
                a
            }
        }

        impl<P: $FpParameters> $Fp<P> {
            #[inline(always)]
            pub(crate) fn is_valid(&self) -> bool {
                self.0 < P::MODULUS
            }

            #[inline]
            fn reduce(&mut self) {
                if !self.is_valid() {
                    self.0.sub_noborrow(&P::MODULUS);
                }
            }
        }

        impl<P: $FpParameters> Zero for $Fp<P> {
            #[inline]
            fn zero() -> Self {
                $Fp::<P>($BigInteger::from(0), PhantomData)
            }

            #[inline]
            fn is_zero(&self) -> bool {
                self.0.is_zero()
            }
        }

        impl<P: $FpParameters> One for $Fp<P> {
            #[inline]
            fn one() -> Self {
                $Fp::<P>(P::R, PhantomData)
            }

            #[inline]
            fn is_one(&self) -> bool {
                self.0 == P::R
            }
        }

        impl<P: $FpParameters> Field for $Fp<P> {
            type BasePrimeField = Self;

            fn extension_degree() -> u64 {
                1
            }

            fn from_base_prime_field_elems(elems: &[Self::BasePrimeField]) -> Option<Self> {
                if elems.len() != (Self::extension_degree() as usize) {
                    return None;
                }
                Some(elems[0])
            }

            #[inline]
            fn double(&self) -> Self {
                let mut temp = *self;
                temp.double_in_place();
                temp
            }

            #[inline]
            fn double_in_place(&mut self) -> &mut Self {
                // This cannot exceed the backing capacity.
                self.0.mul2();
                // However, it may need to be reduced.
                self.reduce();
                self
            }

            #[inline]
            fn characteristic() -> &'static [u64] {
                P::MODULUS.as_ref()
            }

            #[inline]
            fn from_random_bytes_with_flags<F: Flags>(bytes: &[u8]) -> Option<(Self, F)> {
                if F::BIT_SIZE > 8 {
                    return None
                } else {
                    let mut result_bytes = [0u8; $limbs * 8 + 1];
                    // Copy the input into a temporary buffer.
                    result_bytes.iter_mut().zip(bytes).for_each(|(result, input)| {
                        *result = *input;
                    });
                    // This mask retains everything in the last limb
                    // that is below `P::MODULUS_BITS`.
                    let last_limb_mask = (u64::MAX >> P::REPR_SHAVE_BITS).to_le_bytes();
                    let mut last_bytes_mask = [0u8; 9];
                    last_bytes_mask[..8].copy_from_slice(&last_limb_mask);


                    // Length of the buffer containing the field element and the flag.
                    let output_byte_size = buffer_byte_size(P::MODULUS_BITS as usize + F::BIT_SIZE);
                    // Location of the flag is the last byte of the serialized
                    // form of the field element.
                    let flag_location = output_byte_size - 1;

                    // At which byte is the flag located in the last limb?
                    let flag_location_in_last_limb = flag_location - (8 * ($limbs - 1));

                    // Take all but the last 9 bytes.
                    let last_bytes = &mut result_bytes[8 * ($limbs - 1)..];

                    // The mask only has the last `F::BIT_SIZE` bits set
                    let flags_mask = u8::MAX.checked_shl(8 - (F::BIT_SIZE as u32)).unwrap_or(0);

                    // Mask away the remaining bytes, and try to reconstruct the
                    // flag
                    let mut flags: u8 = 0;
                    for (i, (b, m)) in last_bytes.iter_mut().zip(&last_bytes_mask).enumerate() {
                        if i == flag_location_in_last_limb {
                            flags = *b & flags_mask
                        }
                        *b &= m;
                    }
                    Self::deserialize(&result_bytes[..($limbs * 8)])
                        .ok()
                        .and_then(|f| F::from_u8(flags).map(|flag| (f, flag)))
                }
            }

            #[inline]
            fn square(&self) -> Self {
                let mut temp = self.clone();
                temp.square_in_place();
                temp
            }

            impl_field_square_in_place!($limbs);

            #[inline]
            fn inverse(&self) -> Option<Self> {
                if self.is_zero() {
                    None
                } else {
                    // Guajardo Kumar Paar Pelzl
                    // Efficient Software-Implementation of Finite Fields with Applications to
                    // Cryptography
                    // Algorithm 16 (BEA for Inversion in Fp)

                    let one = $BigInteger::from(1);

                    let mut u = self.0;
                    let mut v = P::MODULUS;
                    let mut b = $Fp::<P>(P::R2, PhantomData); // Avoids unnecessary reduction step.
                    let mut c = Self::zero();

                    while u != one && v != one {
                        while u.is_even() {
                            u.div2();

                            if b.0.is_even() {
                                b.0.div2();
                            } else {
                                b.0.add_nocarry(&P::MODULUS);
                                b.0.div2();
                            }
                        }

                        while v.is_even() {
                            v.div2();

                            if c.0.is_even() {
                                c.0.div2();
                            } else {
                                c.0.add_nocarry(&P::MODULUS);
                                c.0.div2();
                            }
                        }

                        if v < u {
                            u.sub_noborrow(&v);
                            b.sub_assign(&c);
                        } else {
                            v.sub_noborrow(&u);
                            c.sub_assign(&b);
                        }
                    }

                    if u == one {
                        Some(b)
                    } else {
                        Some(c)
                    }
                }
            }

            fn inverse_in_place(&mut self) -> Option<&mut Self> {
                if let Some(inverse) = self.inverse() {
                    *self = inverse;
                    Some(self)
                } else {
                    None
                }
            }

            /// The Frobenius map has no effect in a prime field.
            #[inline]
            fn frobenius_map(&mut self, _: usize) {}
        }

        impl<P: $FpParameters> PrimeField for $Fp<P> {
            type Params = P;
            type BigInt = $BigIntegerType;

            #[inline]
            fn from_repr(r: $BigIntegerType) -> Option<Self> {
                let mut r = $Fp(r, PhantomData);
                if r.is_zero() {
                    Some(r)
                } else if r.is_valid() {
                    r *= &$Fp(P::R2, PhantomData);
                    Some(r)
                } else {
                    None
                }
            }

            impl_field_into_repr!($limbs, $BigIntegerType);
        }

        impl<P: $FpParameters> FftField for $Fp<P> {
            type FftParams = P;

            #[inline]
            fn two_adic_root_of_unity() -> Self {
                $Fp::<P>(P::TWO_ADIC_ROOT_OF_UNITY, PhantomData)
            }

            #[inline]
            fn large_subgroup_root_of_unity() -> Option<Self> {
                Some($Fp::<P>(P::LARGE_SUBGROUP_ROOT_OF_UNITY?, PhantomData))
            }

            #[inline]
            fn multiplicative_generator() -> Self {
                $Fp::<P>(P::GENERATOR, PhantomData)
            }
        }

        impl<P: $FpParameters> SquareRootField for $Fp<P> {
            #[inline]
            fn legendre(&self) -> LegendreSymbol {
                use crate::fields::LegendreSymbol::*;

                // s = self^((MODULUS - 1) // 2)
                let s = self.pow(P::MODULUS_MINUS_ONE_DIV_TWO);
                if s.is_zero() {
                    Zero
                } else if s.is_one() {
                    QuadraticResidue
                } else {
                    QuadraticNonResidue
                }
            }

            #[inline]
            fn sqrt(&self) -> Option<Self> {
                sqrt_impl!(Self, P, self)
            }

            fn sqrt_in_place(&mut self) -> Option<&mut Self> {
                (*self).sqrt().map(|sqrt| {
                    *self = sqrt;
                    self
                })
            }
        }

        /// Note that this implementation of `Ord` compares field elements viewing
        /// them as integers in the range 0, 1, ..., P::MODULUS - 1. However, other
        /// implementations of `PrimeField` might choose a different ordering, and
        /// as such, users should use this `Ord` for applications where
        /// any ordering suffices (like in a BTreeMap), and not in applications
        /// where a particular ordering is required.
        impl<P: $FpParameters> Ord for $Fp<P> {
            #[inline(always)]
            fn cmp(&self, other: &Self) -> Ordering {
                self.into_repr().cmp(&other.into_repr())
            }
        }

        /// Note that this implementation of `PartialOrd` compares field elements viewing
        /// them as integers in the range 0, 1, ..., `P::MODULUS` - 1. However, other
        /// implementations of `PrimeField` might choose a different ordering, and
        /// as such, users should use this `PartialOrd` for applications where
        /// any ordering suffices (like in a BTreeMap), and not in applications
        /// where a particular ordering is required.
        impl<P: $FpParameters> PartialOrd for $Fp<P> {
            #[inline(always)]
            fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
                Some(self.cmp(other))
            }
        }

        impl_prime_field_from_int!($Fp, 128, $FpParameters, $limbs);
        impl_prime_field_from_int!($Fp, 64, $FpParameters, $limbs);
        impl_prime_field_from_int!($Fp, 32, $FpParameters, $limbs);
        impl_prime_field_from_int!($Fp, 16, $FpParameters, $limbs);
        impl_prime_field_from_int!($Fp, 8, $FpParameters, $limbs);
        impl_prime_field_from_int!($Fp, bool, $FpParameters, $limbs);

        impl_prime_field_standard_sample!($Fp, $FpParameters);

        impl_prime_field_serializer!($Fp, $FpParameters, $limbs * 8);

        impl<P: $FpParameters> ToBytes for $Fp<P> {
            #[inline]
            fn write<W: Write>(&self, writer: W) -> IoResult<()> {
                self.into_repr().write(writer)
            }
        }

        impl<P: $FpParameters> FromBytes for $Fp<P> {
            #[inline]
            fn read<R: Read>(reader: R) -> IoResult<Self> {
                $BigInteger::read(reader).and_then(|b|
                    match $Fp::from_repr(b) {
                        Some(f) => Ok(f),
                        None => Err(crate::error("FromBytes::read failed")),
                    })
            }
        }

        impl<P: $FpParameters> FromStr for $Fp<P> {
            type Err = ();

            /// Interpret a string of numbers as a (congruent) prime field element.
            /// Does not accept unnecessary leading zeroes or a blank string.
            fn from_str(s: &str) -> Result<Self, Self::Err> {
                if s.is_empty() {
                    return Err(());
                }

                if s == "0" {
                    return Ok(Self::zero());
                }

                let mut res = Self::zero();

                let ten = Self::from(<Self as PrimeField>::BigInt::from(10));

                let mut first_digit = true;

                for c in s.chars() {
                    match c.to_digit(10) {
                        Some(c) => {
                            if first_digit {
                                if c == 0 {
                                    return Err(());
                                }

                                first_digit = false;
                            }

                            res.mul_assign(&ten);
                            let digit = Self::from(u64::from(c));
                            res.add_assign(&digit);
                        },
                        None => {
                            return Err(());
                        },
                    }
                }
                if !res.is_valid() {
                    Err(())
                } else {
                    Ok(res)
                }
            }
        }

        /// Outputs a string containing the value of `self`, chunked up into
        /// 64-bit limbs.
        impl<P: $FpParameters> Display for $Fp<P> {
            #[inline]
            fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
                write!(f, stringify!($Fp"({})"), self.into_repr())
            }
        }

        impl<P: $FpParameters> Neg for $Fp<P> {
            type Output = Self;
            #[inline]
            #[must_use]
            fn neg(self) -> Self {
                if !self.is_zero() {
                    let mut tmp = P::MODULUS;
                    tmp.sub_noborrow(&self.0);
                    $Fp::<P>(tmp, PhantomData)
                } else {
                    self
                }
            }
        }

        impl<'a, P: $FpParameters> Add<&'a $Fp<P>> for $Fp<P> {
            type Output = Self;

            #[inline]
            fn add(mut self, other: &Self) -> Self {
                self.add_assign(other);
                self
            }
        }

        impl<'a, P: $FpParameters> Sub<&'a $Fp<P>> for $Fp<P> {
            type Output = Self;

            #[inline]
            fn sub(mut self, other: &Self) -> Self {
                self.sub_assign(other);
                self
            }
        }

        impl<'a, P: $FpParameters> Mul<&'a $Fp<P>> for $Fp<P> {
            type Output = Self;

            #[inline]
            fn mul(mut self, other: &Self) -> Self {
                self.mul_assign(other);
                self
            }
        }

        impl<'a, P: $FpParameters> Div<&'a $Fp<P>> for $Fp<P> {
            type Output = Self;

            /// Returns `self * other.inverse()` if `other.inverse()` is `Some`, and
            /// panics otherwise.
            #[inline]
            fn div(mut self, other: &Self) -> Self {
                self.mul_assign(&other.inverse().unwrap());
                self
            }
        }

        impl_additive_ops_from_ref!($Fp, $FpParameters);
        impl_multiplicative_ops_from_ref!($Fp, $FpParameters);

        impl<'a, P: $FpParameters> AddAssign<&'a Self> for $Fp<P> {
            #[inline]
            fn add_assign(&mut self, other: &Self) {
                // This cannot exceed the backing capacity.
                self.0.add_nocarry(&other.0);
                // However, it may need to be reduced
                self.reduce();
            }
        }

        impl<'a, P: $FpParameters> SubAssign<&'a Self> for $Fp<P> {
            #[inline]
            fn sub_assign(&mut self, other: &Self) {
                // If `other` is larger than `self`, add the modulus to self first.
                if other.0 > self.0 {
                    self.0.add_nocarry(&P::MODULUS);
                }
                self.0.sub_noborrow(&other.0);
            }
        }

        impl<'a, P: $FpParameters> MulAssign<&'a Self> for $Fp<P> {
            impl_field_mul_assign!($limbs);
        }

        /// Computes `self *= other.inverse()` if `other.inverse()` is `Some`, and
        /// panics otherwise.
        impl<'a, P: $FpParameters> DivAssign<&'a Self> for $Fp<P> {
            #[inline]
            fn div_assign(&mut self, other: &Self) {
                self.mul_assign(&other.inverse().unwrap());
            }
        }

        impl<P: $FpParameters> zeroize::Zeroize for $Fp<P> {
            // The phantom data does not contain element-specific data
            // and thus does not need to be zeroized.
            fn zeroize(&mut self) {
                self.0.zeroize();
            }
        }

        impl<P: $FpParameters> From<num_bigint::BigUint> for $Fp<P> {
            #[inline]
            fn from(val: num_bigint::BigUint) -> $Fp<P> {
                $Fp::<P>::from_le_bytes_mod_order(&val.to_bytes_le())
            }
        }

        impl<P: $FpParameters> Into<num_bigint::BigUint> for $Fp<P> {
            #[inline]
            fn into(self) -> num_bigint::BigUint {
                self.into_repr().into()
            }
        }
    }
}