1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
use ark_std::{marker::PhantomData, Zero};

use super::{Fp, FpConfig};
use crate::{biginteger::arithmetic as fa, BigInt, BigInteger, PrimeField, SqrtPrecomputation};
use ark_ff_macros::unroll_for_loops;

/// A trait that specifies the constants and arithmetic procedures
/// for Montgomery arithmetic over the prime field defined by `MODULUS`.
///
/// # Note
/// Manual implementation of this trait is not recommended unless one wishes
/// to specialize arithmetic methods. Instead, the
/// [`MontConfig`][`ark_ff_macros::MontConfig`] derive macro should be used.
pub trait MontConfig<const N: usize>: 'static + Sync + Send + Sized {
    /// The modulus of the field.
    const MODULUS: BigInt<N>;

    /// Let `M` be the power of 2^64 nearest to `Self::MODULUS_BITS`. Then
    /// `R = M % Self::MODULUS`.
    const R: BigInt<N> = Self::MODULUS.montgomery_r();

    /// R2 = R^2 % Self::MODULUS
    const R2: BigInt<N> = Self::MODULUS.montgomery_r2();

    /// INV = -MODULUS^{-1} mod 2^64
    const INV: u64 = inv::<Self, N>();

    /// A multiplicative generator of the field.
    /// `Self::GENERATOR` is an element having multiplicative order
    /// `Self::MODULUS - 1`.
    const GENERATOR: Fp<MontBackend<Self, N>, N>;

    /// Can we use the no-carry optimization for multiplication
    /// outlined [here](https://hackmd.io/@gnark/modular_multiplication)?
    ///
    /// This optimization applies if
    /// (a) `Self::MODULUS[N-1] < u64::MAX >> 1`, and
    /// (b) the bits of the modulus are not all 1.
    #[doc(hidden)]
    const CAN_USE_NO_CARRY_MUL_OPT: bool = can_use_no_carry_mul_optimization::<Self, N>();

    /// Can we use the no-carry optimization for squaring
    /// outlined [here](https://hackmd.io/@gnark/modular_multiplication)?
    ///
    /// This optimization applies if
    /// (a) `Self::MODULUS[N-1] < u64::MAX >> 2`, and
    /// (b) the bits of the modulus are not all 1.
    #[doc(hidden)]
    const CAN_USE_NO_CARRY_SQUARE_OPT: bool = can_use_no_carry_mul_optimization::<Self, N>();

    /// Does the modulus have a spare unused bit
    ///
    /// This condition applies if
    /// (a) `Self::MODULUS[N-1] >> 63 == 0`
    #[doc(hidden)]
    const MODULUS_HAS_SPARE_BIT: bool = modulus_has_spare_bit::<Self, N>();

    /// 2^s root of unity computed by GENERATOR^t
    const TWO_ADIC_ROOT_OF_UNITY: Fp<MontBackend<Self, N>, N>;

    /// An integer `b` such that there exists a multiplicative subgroup
    /// of size `b^k` for some integer `k`.
    const SMALL_SUBGROUP_BASE: Option<u32> = None;

    /// The integer `k` such that there exists a multiplicative subgroup
    /// of size `Self::SMALL_SUBGROUP_BASE^k`.
    const SMALL_SUBGROUP_BASE_ADICITY: Option<u32> = None;

    /// GENERATOR^((MODULUS-1) / (2^s *
    /// SMALL_SUBGROUP_BASE^SMALL_SUBGROUP_BASE_ADICITY)).
    /// Used for mixed-radix FFT.
    const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Fp<MontBackend<Self, N>, N>> = None;

    /// Precomputed material for use when computing square roots.
    /// The default is to use the standard Tonelli-Shanks algorithm.
    const SQRT_PRECOMP: Option<SqrtPrecomputation<Fp<MontBackend<Self, N>, N>>> =
        sqrt_precomputation::<N, Self>();

    /// (MODULUS + 1) / 4 when MODULUS % 4 == 3. Used for square root precomputations.
    #[doc(hidden)]
    const MODULUS_PLUS_ONE_DIV_FOUR: Option<BigInt<N>> = {
        match Self::MODULUS.mod_4() == 3 {
            true => {
                let (modulus_plus_one, carry) =
                    Self::MODULUS.const_add_with_carry(&BigInt::<N>::one());
                let mut result = modulus_plus_one.divide_by_2_round_down();
                // Since modulus_plus_one is even, dividing by 2 results in a MSB of 0.
                // Thus we can set MSB to `carry` to get the correct result of (MODULUS + 1) // 2:
                result.0[N - 1] |= (carry as u64) << 63;
                Some(result.divide_by_2_round_down())
            },
            false => None,
        }
    };

    /// Sets `a = a + b`.
    #[inline(always)]
    fn add_assign(a: &mut Fp<MontBackend<Self, N>, N>, b: &Fp<MontBackend<Self, N>, N>) {
        // This cannot exceed the backing capacity.
        let c = a.0.add_with_carry(&b.0);
        // However, it may need to be reduced
        if Self::MODULUS_HAS_SPARE_BIT {
            a.subtract_modulus()
        } else {
            a.subtract_modulus_with_carry(c)
        }
    }

    /// Sets `a = a - b`.
    #[inline(always)]
    fn sub_assign(a: &mut Fp<MontBackend<Self, N>, N>, b: &Fp<MontBackend<Self, N>, N>) {
        // If `other` is larger than `self`, add the modulus to self first.
        if b.0 > a.0 {
            a.0.add_with_carry(&Self::MODULUS);
        }
        a.0.sub_with_borrow(&b.0);
    }

    /// Sets `a = 2 * a`.
    #[inline(always)]
    fn double_in_place(a: &mut Fp<MontBackend<Self, N>, N>) {
        // This cannot exceed the backing capacity.
        let c = a.0.mul2();
        // However, it may need to be reduced.
        if Self::MODULUS_HAS_SPARE_BIT {
            a.subtract_modulus()
        } else {
            a.subtract_modulus_with_carry(c)
        }
    }

    /// Sets `a = -a`.
    #[inline(always)]
    fn neg_in_place(a: &mut Fp<MontBackend<Self, N>, N>) {
        if !a.is_zero() {
            let mut tmp = Self::MODULUS;
            tmp.sub_with_borrow(&a.0);
            a.0 = tmp;
        }
    }

    /// This modular multiplication algorithm uses Montgomery
    /// reduction for efficient implementation. It also additionally
    /// uses the "no-carry optimization" outlined
    /// [here](https://hackmd.io/@gnark/modular_multiplication) if
    /// `Self::MODULUS` has (a) a non-zero MSB, and (b) at least one
    /// zero bit in the rest of the modulus.
    #[unroll_for_loops(12)]
    #[inline(always)]
    fn mul_assign(a: &mut Fp<MontBackend<Self, N>, N>, b: &Fp<MontBackend<Self, N>, N>) {
        // No-carry optimisation applied to CIOS
        if Self::CAN_USE_NO_CARRY_MUL_OPT {
            if N <= 6
                && N > 1
                && cfg!(all(
                    feature = "asm",
                    target_feature = "bmi2",
                    target_feature = "adx",
                    target_arch = "x86_64"
                ))
            {
                #[cfg(
                    all(
                        feature = "asm", 
                        target_feature = "bmi2", 
                        target_feature = "adx", 
                        target_arch = "x86_64"
                    )
                )]
                #[allow(unsafe_code, unused_mut)]
                #[rustfmt::skip]

                // Tentatively avoid using assembly for `N == 1`.
                match N {
                    2 => { ark_ff_asm::x86_64_asm_mul!(2, (a.0).0, (b.0).0); },
                    3 => { ark_ff_asm::x86_64_asm_mul!(3, (a.0).0, (b.0).0); },
                    4 => { ark_ff_asm::x86_64_asm_mul!(4, (a.0).0, (b.0).0); },
                    5 => { ark_ff_asm::x86_64_asm_mul!(5, (a.0).0, (b.0).0); },
                    6 => { ark_ff_asm::x86_64_asm_mul!(6, (a.0).0, (b.0).0); },
                    _ => unsafe { ark_std::hint::unreachable_unchecked() },
                };
            } else {
                let mut r = [0u64; N];

                for i in 0..N {
                    let mut carry1 = 0u64;
                    r[0] = fa::mac(r[0], (a.0).0[0], (b.0).0[i], &mut carry1);

                    let k = r[0].wrapping_mul(Self::INV);

                    let mut carry2 = 0u64;
                    fa::mac_discard(r[0], k, Self::MODULUS.0[0], &mut carry2);

                    for j in 1..N {
                        r[j] = fa::mac_with_carry(r[j], (a.0).0[j], (b.0).0[i], &mut carry1);
                        r[j - 1] = fa::mac_with_carry(r[j], k, Self::MODULUS.0[j], &mut carry2);
                    }
                    r[N - 1] = carry1 + carry2;
                }
                (a.0).0 = r;
            }
            a.subtract_modulus();
        } else {
            // Alternative implementation
            // Implements CIOS.
            let (carry, res) = a.mul_without_cond_subtract(b);
            *a = res;

            if Self::MODULUS_HAS_SPARE_BIT {
                a.subtract_modulus_with_carry(carry);
            } else {
                a.subtract_modulus();
            }
        }
    }

    #[inline(always)]
    #[unroll_for_loops(12)]
    fn square_in_place(a: &mut Fp<MontBackend<Self, N>, N>) {
        if N == 1 {
            // We default to multiplying with `a` using the `Mul` impl
            // for the N == 1 case
            *a *= *a;
            return;
        }
        if Self::CAN_USE_NO_CARRY_SQUARE_OPT
            && (2..=6).contains(&N)
            && cfg!(all(
                feature = "asm",
                target_feature = "bmi2",
                target_feature = "adx",
                target_arch = "x86_64"
            ))
        {
            #[cfg(all(
                feature = "asm",
                target_feature = "bmi2",
                target_feature = "adx",
                target_arch = "x86_64"
            ))]
            #[allow(unsafe_code, unused_mut)]
            #[rustfmt::skip]
            match N {
                2 => { ark_ff_asm::x86_64_asm_square!(2, (a.0).0); },
                3 => { ark_ff_asm::x86_64_asm_square!(3, (a.0).0); },
                4 => { ark_ff_asm::x86_64_asm_square!(4, (a.0).0); },
                5 => { ark_ff_asm::x86_64_asm_square!(5, (a.0).0); },
                6 => { ark_ff_asm::x86_64_asm_square!(6, (a.0).0); },
                _ => unsafe { ark_std::hint::unreachable_unchecked() },
            };
            a.subtract_modulus();
            return;
        }

        let mut r = crate::const_helpers::MulBuffer::<N>::zeroed();

        let mut carry = 0;
        for i in 0..(N - 1) {
            for j in (i + 1)..N {
                r[i + j] = fa::mac_with_carry(r[i + j], (a.0).0[i], (a.0).0[j], &mut carry);
            }
            r.b1[i] = carry;
            carry = 0;
        }

        r.b1[N - 1] = r.b1[N - 2] >> 63;
        for i in 2..(2 * N - 1) {
            r[2 * N - i] = (r[2 * N - i] << 1) | (r[2 * N - (i + 1)] >> 63);
        }
        r.b0[1] <<= 1;

        for i in 0..N {
            r[2 * i] = fa::mac_with_carry(r[2 * i], (a.0).0[i], (a.0).0[i], &mut carry);
            carry = fa::adc(&mut r[2 * i + 1], 0, carry);
        }
        // Montgomery reduction
        let mut carry2 = 0;
        for i in 0..N {
            let k = r[i].wrapping_mul(Self::INV);
            let mut carry = 0;
            fa::mac_discard(r[i], k, Self::MODULUS.0[0], &mut carry);
            for j in 1..N {
                r[j + i] = fa::mac_with_carry(r[j + i], k, Self::MODULUS.0[j], &mut carry);
            }
            carry2 = fa::adc(&mut r.b1[i], carry, carry2);
        }
        (a.0).0.copy_from_slice(&r.b1);
        if Self::MODULUS_HAS_SPARE_BIT {
            a.subtract_modulus();
        } else {
            a.subtract_modulus_with_carry(carry2 != 0);
        }
    }

    fn inverse(a: &Fp<MontBackend<Self, N>, N>) -> Option<Fp<MontBackend<Self, N>, N>> {
        if a.is_zero() {
            None
        } else {
            // Guajardo Kumar Paar Pelzl
            // Efficient Software-Implementation of Finite Fields with Applications to
            // Cryptography
            // Algorithm 16 (BEA for Inversion in Fp)

            let one = BigInt::from(1u64);

            let mut u = a.0;
            let mut v = Self::MODULUS;
            let mut b = Fp::new_unchecked(Self::R2); // Avoids unnecessary reduction step.
            let mut c = Fp::zero();

            while u != one && v != one {
                while u.is_even() {
                    u.div2();

                    if b.0.is_even() {
                        b.0.div2();
                    } else {
                        let carry = b.0.add_with_carry(&Self::MODULUS);
                        b.0.div2();
                        if !Self::MODULUS_HAS_SPARE_BIT && carry {
                            (b.0).0[N - 1] |= 1 << 63;
                        }
                    }
                }

                while v.is_even() {
                    v.div2();

                    if c.0.is_even() {
                        c.0.div2();
                    } else {
                        let carry = c.0.add_with_carry(&Self::MODULUS);
                        c.0.div2();
                        if !Self::MODULUS_HAS_SPARE_BIT && carry {
                            (c.0).0[N - 1] |= 1 << 63;
                        }
                    }
                }

                if v < u {
                    u.sub_with_borrow(&v);
                    b -= &c;
                } else {
                    v.sub_with_borrow(&u);
                    c -= &b;
                }
            }

            if u == one {
                Some(b)
            } else {
                Some(c)
            }
        }
    }

    fn from_bigint(r: BigInt<N>) -> Option<Fp<MontBackend<Self, N>, N>> {
        let mut r = Fp::new_unchecked(r);
        if r.is_zero() {
            Some(r)
        } else if r.is_geq_modulus() {
            None
        } else {
            r *= &Fp::new_unchecked(Self::R2);
            Some(r)
        }
    }

    #[inline]
    #[unroll_for_loops(12)]
    #[allow(clippy::modulo_one)]
    fn into_bigint(a: Fp<MontBackend<Self, N>, N>) -> BigInt<N> {
        let mut tmp = a.0;
        let mut r = tmp.0;
        // Montgomery Reduction
        for i in 0..N {
            let k = r[i].wrapping_mul(Self::INV);
            let mut carry = 0;

            fa::mac_with_carry(r[i], k, Self::MODULUS.0[0], &mut carry);
            for j in 1..N {
                r[(j + i) % N] =
                    fa::mac_with_carry(r[(j + i) % N], k, Self::MODULUS.0[j], &mut carry);
            }
            r[i % N] = carry;
        }
        tmp.0 = r;
        tmp
    }

    #[unroll_for_loops(12)]
    fn sum_of_products<const M: usize>(
        a: &[Fp<MontBackend<Self, N>, N>; M],
        b: &[Fp<MontBackend<Self, N>, N>; M],
    ) -> Fp<MontBackend<Self, N>, N> {
        // Adapted from https://github.com/zkcrypto/bls12_381/pull/84 by @str4d.

        // For a single `a x b` multiplication, operand scanning (schoolbook) takes each
        // limb of `a` in turn, and multiplies it by all of the limbs of `b` to compute
        // the result as a double-width intermediate representation, which is then fully
        // reduced at the carry. Here however we have pairs of multiplications (a_i, b_i),
        // the results of which are summed.
        //
        // The intuition for this algorithm is two-fold:
        // - We can interleave the operand scanning for each pair, by processing the jth
        //   limb of each `a_i` together. As these have the same offset within the overall
        //   operand scanning flow, their results can be summed directly.
        // - We can interleave the multiplication and reduction steps, resulting in a
        //   single bitshift by the limb size after each iteration. This means we only
        //   need to store a single extra limb overall, instead of keeping around all the
        //   intermediate results and eventually having twice as many limbs.

        let modulus_size = Self::MODULUS.const_num_bits() as usize;
        if modulus_size >= 64 * N - 1 {
            a.iter().zip(b).map(|(a, b)| *a * b).sum()
        } else if M == 2 {
            // Algorithm 2, line 2
            let result = (0..N).fold(BigInt::zero(), |mut result, j| {
                // Algorithm 2, line 3
                let mut carry_a = 0;
                let mut carry_b = 0;
                for (a, b) in a.iter().zip(b) {
                    let a = &a.0;
                    let b = &b.0;
                    let mut carry2 = 0;
                    result.0[0] = fa::mac(result.0[0], a.0[j], b.0[0], &mut carry2);
                    for k in 1..N {
                        result.0[k] = fa::mac_with_carry(result.0[k], a.0[j], b.0[k], &mut carry2);
                    }
                    carry_b = fa::adc(&mut carry_a, carry_b, carry2);
                }

                let k = result.0[0].wrapping_mul(Self::INV);
                let mut carry2 = 0;
                fa::mac_discard(result.0[0], k, Self::MODULUS.0[0], &mut carry2);
                for i in 1..N {
                    result.0[i - 1] =
                        fa::mac_with_carry(result.0[i], k, Self::MODULUS.0[i], &mut carry2);
                }
                result.0[N - 1] = fa::adc_no_carry(carry_a, carry_b, &mut carry2);
                result
            });
            let mut result = Fp::new_unchecked(result);
            result.subtract_modulus();
            debug_assert_eq!(
                a.iter().zip(b).map(|(a, b)| *a * b).sum::<Fp<_, N>>(),
                result
            );
            result
        } else {
            let chunk_size = 2 * (N * 64 - modulus_size) - 1;
            // chunk_size is at least 1, since MODULUS_BIT_SIZE is at most N * 64 - 1.
            a.chunks(chunk_size)
                .zip(b.chunks(chunk_size))
                .map(|(a, b)| {
                    // Algorithm 2, line 2
                    let result = (0..N).fold(BigInt::zero(), |mut result, j| {
                        // Algorithm 2, line 3
                        let (temp, carry) = a.iter().zip(b).fold(
                            (result, 0),
                            |(mut temp, mut carry), (Fp(a, _), Fp(b, _))| {
                                let mut carry2 = 0;
                                temp.0[0] = fa::mac(temp.0[0], a.0[j], b.0[0], &mut carry2);
                                for k in 1..N {
                                    temp.0[k] =
                                        fa::mac_with_carry(temp.0[k], a.0[j], b.0[k], &mut carry2);
                                }
                                carry = fa::adc_no_carry(carry, 0, &mut carry2);
                                (temp, carry)
                            },
                        );

                        let k = temp.0[0].wrapping_mul(Self::INV);
                        let mut carry2 = 0;
                        fa::mac_discard(temp.0[0], k, Self::MODULUS.0[0], &mut carry2);
                        for i in 1..N {
                            result.0[i - 1] =
                                fa::mac_with_carry(temp.0[i], k, Self::MODULUS.0[i], &mut carry2);
                        }
                        result.0[N - 1] = fa::adc_no_carry(carry, 0, &mut carry2);
                        result
                    });
                    let mut result = Fp::new_unchecked(result);
                    result.subtract_modulus();
                    debug_assert_eq!(
                        a.iter().zip(b).map(|(a, b)| *a * b).sum::<Fp<_, N>>(),
                        result
                    );
                    result
                })
                .sum()
        }
    }
}

/// Compute -M^{-1} mod 2^64.
pub const fn inv<T: MontConfig<N>, const N: usize>() -> u64 {
    // We compute this as follows.
    // First, MODULUS mod 2^64 is just the lower 64 bits of MODULUS.
    // Hence MODULUS mod 2^64 = MODULUS.0[0] mod 2^64.
    //
    // Next, computing the inverse mod 2^64 involves exponentiating by
    // the multiplicative group order, which is euler_totient(2^64) - 1.
    // Now, euler_totient(2^64) = 1 << 63, and so
    // euler_totient(2^64) - 1 = (1 << 63) - 1 = 1111111... (63 digits).
    // We compute this powering via standard square and multiply.
    let mut inv = 1u64;
    crate::const_for!((_i in 0..63) {
        // Square
        inv = inv.wrapping_mul(inv);
        // Multiply
        inv = inv.wrapping_mul(T::MODULUS.0[0]);
    });
    inv.wrapping_neg()
}

#[inline]
pub const fn can_use_no_carry_mul_optimization<T: MontConfig<N>, const N: usize>() -> bool {
    // Checking the modulus at compile time
    let top_bit_is_zero = T::MODULUS.0[N - 1] >> 63 == 0;
    let mut all_remaining_bits_are_one = T::MODULUS.0[N - 1] == u64::MAX >> 1;
    crate::const_for!((i in 1..N) {
        all_remaining_bits_are_one  &= T::MODULUS.0[N - i - 1] == u64::MAX;
    });
    top_bit_is_zero && !all_remaining_bits_are_one
}

#[inline]
pub const fn modulus_has_spare_bit<T: MontConfig<N>, const N: usize>() -> bool {
    T::MODULUS.0[N - 1] >> 63 == 0
}

#[inline]
pub const fn can_use_no_carry_square_optimization<T: MontConfig<N>, const N: usize>() -> bool {
    // Checking the modulus at compile time
    let top_two_bits_are_zero = T::MODULUS.0[N - 1] >> 62 == 0;
    let mut all_remaining_bits_are_one = T::MODULUS.0[N - 1] == u64::MAX >> 2;
    crate::const_for!((i in 1..N) {
        all_remaining_bits_are_one  &= T::MODULUS.0[N - i - 1] == u64::MAX;
    });
    top_two_bits_are_zero && !all_remaining_bits_are_one
}

pub const fn sqrt_precomputation<const N: usize, T: MontConfig<N>>(
) -> Option<SqrtPrecomputation<Fp<MontBackend<T, N>, N>>> {
    match T::MODULUS.mod_4() {
        3 => match T::MODULUS_PLUS_ONE_DIV_FOUR.as_ref() {
            Some(BigInt(modulus_plus_one_div_four)) => Some(SqrtPrecomputation::Case3Mod4 {
                modulus_plus_one_div_four,
            }),
            None => None,
        },
        _ => Some(SqrtPrecomputation::TonelliShanks {
            two_adicity: <MontBackend<T, N>>::TWO_ADICITY,
            quadratic_nonresidue_to_trace: T::TWO_ADIC_ROOT_OF_UNITY,
            trace_of_modulus_minus_one_div_two:
                &<Fp<MontBackend<T, N>, N>>::TRACE_MINUS_ONE_DIV_TWO.0,
        }),
    }
}

/// Construct a [`Fp<MontBackend<T, N>, N>`] element from a literal string. This
/// should be used primarily for constructing constant field elements; in a
/// non-const context, [`Fp::from_str`](`ark_std::str::FromStr::from_str`) is
/// preferable.
///
/// # Panics
///
/// If the integer represented by the string cannot fit in the number
/// of limbs of the `Fp`, this macro results in a
/// * compile-time error if used in a const context
/// * run-time error otherwise.
///
/// # Usage
///
/// ```rust
/// # use ark_test_curves::{MontFp, One};
/// # use ark_test_curves::bls12_381 as ark_bls12_381;
/// # use ark_std::str::FromStr;
/// use ark_bls12_381::Fq;
/// const ONE: Fq = MontFp!("1");
/// const NEG_ONE: Fq = MontFp!("-1");
///
/// fn check_correctness() {
///     assert_eq!(ONE, Fq::one());
///     assert_eq!(Fq::from_str("1").unwrap(), ONE);
///     assert_eq!(NEG_ONE, -Fq::one());
/// }
/// ```
#[macro_export]
macro_rules! MontFp {
    ($c0:expr) => {{
        let (is_positive, limbs) = $crate::ark_ff_macros::to_sign_and_limbs!($c0);
        $crate::Fp::from_sign_and_limbs(is_positive, &limbs)
    }};
}

pub use ark_ff_macros::MontConfig;

pub use MontFp;

pub struct MontBackend<T: MontConfig<N>, const N: usize>(PhantomData<T>);

impl<T: MontConfig<N>, const N: usize> FpConfig<N> for MontBackend<T, N> {
    /// The modulus of the field.
    const MODULUS: crate::BigInt<N> = T::MODULUS;

    /// A multiplicative generator of the field.
    /// `Self::GENERATOR` is an element having multiplicative order
    /// `Self::MODULUS - 1`.
    const GENERATOR: Fp<Self, N> = T::GENERATOR;

    /// Additive identity of the field, i.e. the element `e`
    /// such that, for all elements `f` of the field, `e + f = f`.
    const ZERO: Fp<Self, N> = Fp::new_unchecked(BigInt([0u64; N]));

    /// Multiplicative identity of the field, i.e. the element `e`
    /// such that, for all elements `f` of the field, `e * f = f`.
    const ONE: Fp<Self, N> = Fp::new_unchecked(T::R);

    const TWO_ADICITY: u32 = Self::MODULUS.two_adic_valuation();
    const TWO_ADIC_ROOT_OF_UNITY: Fp<Self, N> = T::TWO_ADIC_ROOT_OF_UNITY;
    const SMALL_SUBGROUP_BASE: Option<u32> = T::SMALL_SUBGROUP_BASE;
    const SMALL_SUBGROUP_BASE_ADICITY: Option<u32> = T::SMALL_SUBGROUP_BASE_ADICITY;
    const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Fp<Self, N>> = T::LARGE_SUBGROUP_ROOT_OF_UNITY;
    const SQRT_PRECOMP: Option<crate::SqrtPrecomputation<Fp<Self, N>>> = T::SQRT_PRECOMP;

    fn add_assign(a: &mut Fp<Self, N>, b: &Fp<Self, N>) {
        T::add_assign(a, b)
    }

    fn sub_assign(a: &mut Fp<Self, N>, b: &Fp<Self, N>) {
        T::sub_assign(a, b)
    }

    fn double_in_place(a: &mut Fp<Self, N>) {
        T::double_in_place(a)
    }

    fn neg_in_place(a: &mut Fp<Self, N>) {
        T::neg_in_place(a)
    }

    /// This modular multiplication algorithm uses Montgomery
    /// reduction for efficient implementation. It also additionally
    /// uses the "no-carry optimization" outlined
    /// [here](https://hackmd.io/@zkteam/modular_multiplication) if
    /// `P::MODULUS` has (a) a non-zero MSB, and (b) at least one
    /// zero bit in the rest of the modulus.
    #[inline]
    fn mul_assign(a: &mut Fp<Self, N>, b: &Fp<Self, N>) {
        T::mul_assign(a, b)
    }

    fn sum_of_products<const M: usize>(a: &[Fp<Self, N>; M], b: &[Fp<Self, N>; M]) -> Fp<Self, N> {
        T::sum_of_products(a, b)
    }

    #[inline]
    #[allow(unused_braces, clippy::absurd_extreme_comparisons)]
    fn square_in_place(a: &mut Fp<Self, N>) {
        T::square_in_place(a)
    }

    fn inverse(a: &Fp<Self, N>) -> Option<Fp<Self, N>> {
        T::inverse(a)
    }

    fn from_bigint(r: BigInt<N>) -> Option<Fp<Self, N>> {
        T::from_bigint(r)
    }

    #[inline]
    #[allow(clippy::modulo_one)]
    fn into_bigint(a: Fp<Self, N>) -> BigInt<N> {
        T::into_bigint(a)
    }
}

impl<T: MontConfig<N>, const N: usize> Fp<MontBackend<T, N>, N> {
    #[doc(hidden)]
    pub const R: BigInt<N> = T::R;
    #[doc(hidden)]
    pub const R2: BigInt<N> = T::R2;
    #[doc(hidden)]
    pub const INV: u64 = T::INV;

    /// Construct a new field element from its underlying
    /// [`struct@BigInt`] data type.
    #[inline]
    pub const fn new(element: BigInt<N>) -> Self {
        let mut r = Self(element, PhantomData);
        if r.const_is_zero() {
            r
        } else {
            r = r.mul(&Fp(T::R2, PhantomData));
            r
        }
    }

    /// Construct a new field element from its underlying
    /// [`struct@BigInt`] data type.
    ///
    /// Unlike [`Self::new`], this method does not perform Montgomery reduction.
    /// Thus, this method should be used only when constructing
    /// an element from an integer that has already been put in
    /// Montgomery form.
    #[inline]
    pub const fn new_unchecked(element: BigInt<N>) -> Self {
        Self(element, PhantomData)
    }

    const fn const_is_zero(&self) -> bool {
        self.0.const_is_zero()
    }

    #[doc(hidden)]
    const fn const_neg(self) -> Self {
        if !self.const_is_zero() {
            Self::new_unchecked(Self::sub_with_borrow(&T::MODULUS, &self.0))
        } else {
            self
        }
    }

    /// Interpret a set of limbs (along with a sign) as a field element.
    /// For *internal* use only; please use the `ark_ff::MontFp` macro instead
    /// of this method
    #[doc(hidden)]
    pub const fn from_sign_and_limbs(is_positive: bool, limbs: &[u64]) -> Self {
        let mut repr = BigInt::<N>([0; N]);
        assert!(limbs.len() <= N);
        crate::const_for!((i in 0..(limbs.len())) {
            repr.0[i] = limbs[i];
        });
        let res = Self::new(repr);
        if is_positive {
            res
        } else {
            res.const_neg()
        }
    }

    const fn mul_without_cond_subtract(mut self, other: &Self) -> (bool, Self) {
        let (mut lo, mut hi) = ([0u64; N], [0u64; N]);
        crate::const_for!((i in 0..N) {
            let mut carry = 0;
            crate::const_for!((j in 0..N) {
                let k = i + j;
                if k >= N {
                    hi[k - N] = mac_with_carry!(hi[k - N], (self.0).0[i], (other.0).0[j], &mut carry);
                } else {
                    lo[k] = mac_with_carry!(lo[k], (self.0).0[i], (other.0).0[j], &mut carry);
                }
            });
            hi[i] = carry;
        });
        // Montgomery reduction
        let mut carry2 = 0;
        crate::const_for!((i in 0..N) {
            let tmp = lo[i].wrapping_mul(T::INV);
            let mut carry;
            mac!(lo[i], tmp, T::MODULUS.0[0], &mut carry);
            crate::const_for!((j in 1..N) {
                let k = i + j;
                if k >= N {
                    hi[k - N] = mac_with_carry!(hi[k - N], tmp, T::MODULUS.0[j], &mut carry);
                }  else {
                    lo[k] = mac_with_carry!(lo[k], tmp, T::MODULUS.0[j], &mut carry);
                }
            });
            hi[i] = adc!(hi[i], carry, &mut carry2);
        });

        crate::const_for!((i in 0..N) {
            (self.0).0[i] = hi[i];
        });
        (carry2 != 0, self)
    }

    const fn mul(self, other: &Self) -> Self {
        let (carry, res) = self.mul_without_cond_subtract(other);
        if T::MODULUS_HAS_SPARE_BIT {
            res.const_subtract_modulus()
        } else {
            res.const_subtract_modulus_with_carry(carry)
        }
    }

    const fn const_is_valid(&self) -> bool {
        crate::const_for!((i in 0..N) {
            if (self.0).0[N - i - 1] < T::MODULUS.0[N - i - 1] {
                return true
            } else if (self.0).0[N - i - 1] > T::MODULUS.0[N - i - 1] {
                return false
            }
        });
        false
    }

    #[inline]
    const fn const_subtract_modulus(mut self) -> Self {
        if !self.const_is_valid() {
            self.0 = Self::sub_with_borrow(&self.0, &T::MODULUS);
        }
        self
    }

    #[inline]
    const fn const_subtract_modulus_with_carry(mut self, carry: bool) -> Self {
        if carry || !self.const_is_valid() {
            self.0 = Self::sub_with_borrow(&self.0, &T::MODULUS);
        }
        self
    }

    const fn sub_with_borrow(a: &BigInt<N>, b: &BigInt<N>) -> BigInt<N> {
        a.const_sub_with_borrow(b).0
    }
}

#[cfg(test)]
mod test {
    use ark_std::{str::FromStr, vec::Vec};
    use ark_test_curves::secp256k1::Fr;
    use num_bigint::{BigInt, BigUint, Sign};

    #[test]
    fn test_mont_macro_correctness() {
        let (is_positive, limbs) = str_to_limbs_u64(
            "111192936301596926984056301862066282284536849596023571352007112326586892541694",
        );
        let t = Fr::from_sign_and_limbs(is_positive, &limbs);

        let result: BigUint = t.into();
        let expected = BigUint::from_str(
            "111192936301596926984056301862066282284536849596023571352007112326586892541694",
        )
        .unwrap();

        assert_eq!(result, expected);
    }

    fn str_to_limbs_u64(num: &str) -> (bool, Vec<u64>) {
        let (sign, digits) = BigInt::from_str(num)
            .expect("could not parse to bigint")
            .to_radix_le(16);
        let limbs = digits
            .chunks(16)
            .map(|chunk| {
                let mut this = 0u64;
                for (i, hexit) in chunk.iter().enumerate() {
                    this += (*hexit as u64) << (4 * i);
                }
                this
            })
            .collect::<Vec<_>>();

        let sign_is_positive = sign != Sign::Minus;
        (sign_is_positive, limbs)
    }
}