1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/// The interface for fields that are able to be used in FFTs.
pub trait FftField: crate::Field {
/// The generator of the multiplicative group of the field
const GENERATOR: Self;
/// Let `N` be the size of the multiplicative group defined by the field.
/// Then `TWO_ADICITY` is the two-adicity of `N`, i.e. the integer `s`
/// such that `N = 2^s * t` for some odd integer `t`.
const TWO_ADICITY: u32;
/// 2^s root of unity computed by GENERATOR^t
const TWO_ADIC_ROOT_OF_UNITY: Self;
/// An integer `b` such that there exists a multiplicative subgroup
/// of size `b^k` for some integer `k`.
const SMALL_SUBGROUP_BASE: Option<u32> = None;
/// The integer `k` such that there exists a multiplicative subgroup
/// of size `Self::SMALL_SUBGROUP_BASE^k`.
const SMALL_SUBGROUP_BASE_ADICITY: Option<u32> = None;
/// GENERATOR^((MODULUS-1) / (2^s *
/// SMALL_SUBGROUP_BASE^SMALL_SUBGROUP_BASE_ADICITY)) Used for mixed-radix
/// FFT.
const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Self> = None;
/// Returns the root of unity of order n, if one exists.
/// If no small multiplicative subgroup is defined, this is the 2-adic root
/// of unity of order n (for n a power of 2).
/// If a small multiplicative subgroup is defined, this is the root of unity
/// of order n for the larger subgroup generated by
/// `FftConfig::LARGE_SUBGROUP_ROOT_OF_UNITY`
/// (for n = 2^i * FftConfig::SMALL_SUBGROUP_BASE^j for some i, j).
fn get_root_of_unity(n: u64) -> Option<Self> {
let mut omega: Self;
if let Some(large_subgroup_root_of_unity) = Self::LARGE_SUBGROUP_ROOT_OF_UNITY {
let q = Self::SMALL_SUBGROUP_BASE.expect(
"LARGE_SUBGROUP_ROOT_OF_UNITY should only be set in conjunction with SMALL_SUBGROUP_BASE",
) as u64;
let small_subgroup_base_adicity = Self::SMALL_SUBGROUP_BASE_ADICITY.expect(
"LARGE_SUBGROUP_ROOT_OF_UNITY should only be set in conjunction with SMALL_SUBGROUP_BASE_ADICITY",
);
let q_adicity = crate::utils::k_adicity(q, n);
let q_part = q.checked_pow(q_adicity)?;
let two_adicity = crate::utils::k_adicity(2, n);
let two_part = 2u64.checked_pow(two_adicity)?;
if n != two_part * q_part
|| (two_adicity > Self::TWO_ADICITY)
|| (q_adicity > small_subgroup_base_adicity)
{
return None;
}
omega = large_subgroup_root_of_unity;
for _ in q_adicity..small_subgroup_base_adicity {
omega = omega.pow([q as u64]);
}
for _ in two_adicity..Self::TWO_ADICITY {
omega.square_in_place();
}
} else {
// Compute the next power of 2.
let size = n.next_power_of_two() as u64;
let log_size_of_group = ark_std::log2(usize::try_from(size).expect("too large"));
if n != size || log_size_of_group > Self::TWO_ADICITY {
return None;
}
// Compute the generator for the multiplicative subgroup.
// It should be 2^(log_size_of_group) root of unity.
omega = Self::TWO_ADIC_ROOT_OF_UNITY;
for _ in log_size_of_group..Self::TWO_ADICITY {
omega.square_in_place();
}
}
Some(omega)
}
}