1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/// Indication of the field element's quadratic residuosity
///
/// # Examples
/// ```
/// # use ark_std::test_rng;
/// # use ark_std::UniformRand;
/// # use ark_test_curves::{LegendreSymbol, Field, bls12_381::Fq as Fp};
/// let a: Fp = Fp::rand(&mut test_rng());
/// let b = a.square();
/// assert_eq!(b.legendre(), LegendreSymbol::QuadraticResidue);
/// ```
#[derive(Debug, PartialEq, Eq)]
pub enum LegendreSymbol {
Zero = 0,
QuadraticResidue = 1,
QuadraticNonResidue = -1,
}
impl LegendreSymbol {
/// Returns true if `self.is_zero()`.
///
/// # Examples
/// ```
/// # use ark_std::test_rng;
/// # use ark_std::UniformRand;
/// # use ark_test_curves::{LegendreSymbol, Field, bls12_381::Fq as Fp};
/// let a: Fp = Fp::rand(&mut test_rng());
/// let b: Fp = a.square();
/// assert!(!b.legendre().is_zero());
/// ```
pub fn is_zero(&self) -> bool {
*self == LegendreSymbol::Zero
}
/// Returns true if `self` is a quadratic non-residue.
///
/// # Examples
/// ```
/// # use ark_test_curves::{Fp2Config, Field, LegendreSymbol, bls12_381::{Fq, Fq2Config}};
/// let a: Fq = Fq2Config::NONRESIDUE;
/// assert!(a.legendre().is_qnr());
/// ```
pub fn is_qnr(&self) -> bool {
*self == LegendreSymbol::QuadraticNonResidue
}
/// Returns true if `self` is a quadratic residue.
/// # Examples
/// ```
/// # use ark_std::test_rng;
/// # use ark_test_curves::bls12_381::Fq as Fp;
/// # use ark_std::UniformRand;
/// # use ark_ff::{LegendreSymbol, Field};
/// let a: Fp = Fp::rand(&mut test_rng());
/// let b: Fp = a.square();
/// assert!(b.legendre().is_qr());
/// ```
pub fn is_qr(&self) -> bool {
*self == LegendreSymbol::QuadraticResidue
}
}
/// Precomputation that makes computing square roots faster
/// A particular variant should only be instantiated if the modulus satisfies
/// the corresponding condition.
#[non_exhaustive]
pub enum SqrtPrecomputation<F: crate::Field> {
// Tonelli-Shanks algorithm works for all elements, no matter what the modulus is.
TonelliShanks {
two_adicity: u32,
quadratic_nonresidue_to_trace: F,
trace_of_modulus_minus_one_div_two: &'static [u64],
},
/// To be used when the modulus is 3 mod 4.
Case3Mod4 {
modulus_plus_one_div_four: &'static [u64],
},
}
impl<F: crate::Field> SqrtPrecomputation<F> {
pub fn sqrt(&self, elem: &F) -> Option<F> {
match self {
Self::TonelliShanks {
two_adicity,
quadratic_nonresidue_to_trace,
trace_of_modulus_minus_one_div_two,
} => {
// https://eprint.iacr.org/2012/685.pdf (page 12, algorithm 5)
// Actually this is just normal Tonelli-Shanks; since `P::Generator`
// is a quadratic non-residue, `P::ROOT_OF_UNITY = P::GENERATOR ^ t`
// is also a quadratic non-residue (since `t` is odd).
if elem.is_zero() {
return Some(F::zero());
}
// Try computing the square root (x at the end of the algorithm)
// Check at the end of the algorithm if x was a square root
// Begin Tonelli-Shanks
let mut z = *quadratic_nonresidue_to_trace;
let mut w = elem.pow(trace_of_modulus_minus_one_div_two);
let mut x = w * elem;
let mut b = x * &w;
let mut v = *two_adicity as usize;
while !b.is_one() {
let mut k = 0usize;
let mut b2k = b;
while !b2k.is_one() {
// invariant: b2k = b^(2^k) after entering this loop
b2k.square_in_place();
k += 1;
}
if k == (*two_adicity as usize) {
// We are in the case where self^(T * 2^k) = x^(P::MODULUS - 1) = 1,
// which means that no square root exists.
return None;
}
let j = v - k;
w = z;
for _ in 1..j {
w.square_in_place();
}
z = w.square();
b *= &z;
x *= &w;
v = k;
}
// Is x the square root? If so, return it.
if x.square() == *elem {
Some(x)
} else {
// Consistency check that if no square root is found,
// it is because none exists.
debug_assert!(!matches!(elem.legendre(), LegendreSymbol::QuadraticResidue));
None
}
},
Self::Case3Mod4 {
modulus_plus_one_div_four,
} => {
let result = elem.pow(modulus_plus_one_div_four.as_ref());
(result.square() == *elem).then_some(result)
},
}
}
}