ark_ff/
const_helpers.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
use ark_serialize::{Read, Write};
use ark_std::ops::{Index, IndexMut};

use crate::BigInt;

/// A helper macro for emulating `for` loops in a `const` context.
/// # Usage
/// ```rust
/// # use ark_ff::const_for;
/// const fn for_in_const() {
///     let mut array = [0usize; 4];
///     const_for!((i in 0..(array.len())) { // We need to wrap the `array.len()` in parenthesis.
///         array[i] = i;
///     });
///     assert!(array[0] == 0);
///     assert!(array[1] == 1);
///     assert!(array[2] == 2);
///     assert!(array[3] == 3);
/// }
/// ```
#[macro_export]
macro_rules! const_for {
    (($i:ident in $start:tt..$end:tt)  $code:expr ) => {{
        let mut $i = $start;
        while $i < $end {
            $code
            $i += 1;
        }
    }};
}

/// A buffer to hold values of size 2 * N. This is mostly
/// a hack that's necessary until `generic_const_exprs` is stable.
#[derive(Copy, Clone)]
#[repr(C, align(8))]
pub(super) struct MulBuffer<const N: usize> {
    pub(super) b0: [u64; N],
    pub(super) b1: [u64; N],
}

impl<const N: usize> MulBuffer<N> {
    const fn new(b0: [u64; N], b1: [u64; N]) -> Self {
        Self { b0, b1 }
    }

    pub(super) const fn zeroed() -> Self {
        let b = [0u64; N];
        Self::new(b, b)
    }

    #[inline(always)]
    pub(super) const fn get(&self, index: usize) -> &u64 {
        if index < N {
            &self.b0[index]
        } else {
            &self.b1[index - N]
        }
    }

    #[inline(always)]
    pub(super) fn get_mut(&mut self, index: usize) -> &mut u64 {
        if index < N {
            &mut self.b0[index]
        } else {
            &mut self.b1[index - N]
        }
    }
}

impl<const N: usize> Index<usize> for MulBuffer<N> {
    type Output = u64;
    #[inline(always)]
    fn index(&self, index: usize) -> &Self::Output {
        self.get(index)
    }
}

impl<const N: usize> IndexMut<usize> for MulBuffer<N> {
    #[inline(always)]
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        self.get_mut(index)
    }
}

/// A buffer to hold values of size 8 * N + 1 bytes. This is mostly
/// a hack that's necessary until `generic_const_exprs` is stable.
#[derive(Copy, Clone)]
#[repr(C, align(1))]
pub(super) struct SerBuffer<const N: usize> {
    pub(super) buffers: [[u8; 8]; N],
    pub(super) last: u8,
}

impl<const N: usize> SerBuffer<N> {
    pub(super) const fn zeroed() -> Self {
        Self {
            buffers: [[0u8; 8]; N],
            last: 0u8,
        }
    }

    #[inline(always)]
    pub(super) const fn get(&self, index: usize) -> &u8 {
        if index == 8 * N {
            &self.last
        } else {
            let part = index / 8;
            let in_buffer_index = index % 8;
            &self.buffers[part][in_buffer_index]
        }
    }

    #[inline(always)]
    pub(super) fn get_mut(&mut self, index: usize) -> &mut u8 {
        if index == 8 * N {
            &mut self.last
        } else {
            let part = index / 8;
            let in_buffer_index = index % 8;
            &mut self.buffers[part][in_buffer_index]
        }
    }

    #[allow(unsafe_code)]
    pub(super) fn as_slice(&self) -> &[u8] {
        unsafe { ark_std::slice::from_raw_parts((self as *const Self) as *const u8, 8 * N + 1) }
    }

    #[inline(always)]
    pub(super) fn last_n_plus_1_bytes_mut(&mut self) -> impl Iterator<Item = &mut u8> {
        self.buffers[N - 1]
            .iter_mut()
            .chain(ark_std::iter::once(&mut self.last))
    }

    #[inline(always)]
    pub(super) fn copy_from_u8_slice(&mut self, other: &[u8]) {
        other.chunks(8).enumerate().for_each(|(i, chunk)| {
            if i < N {
                self.buffers[i][..chunk.len()].copy_from_slice(chunk);
            } else {
                self.last = chunk[0]
            }
        });
    }

    #[inline(always)]
    pub(super) fn copy_from_u64_slice(&mut self, other: &[u64; N]) {
        other
            .iter()
            .zip(&mut self.buffers)
            .for_each(|(other, this)| *this = other.to_le_bytes());
    }

    #[inline(always)]
    pub(super) fn to_bigint(self) -> BigInt<N> {
        let mut self_integer = BigInt::from(0u64);
        self_integer
            .0
            .iter_mut()
            .zip(self.buffers)
            .for_each(|(other, this)| *other = u64::from_le_bytes(this));
        self_integer
    }

    #[inline(always)]
    /// Write up to `num_bytes` bytes from `self` to `other`.
    /// `num_bytes` is allowed to range from `8 * (N - 1) + 1` to `8 * N + 1`.
    pub(super) fn write_up_to(
        &self,
        mut other: impl Write,
        num_bytes: usize,
    ) -> ark_std::io::Result<()> {
        debug_assert!(num_bytes <= 8 * N + 1, "index too large");
        debug_assert!(num_bytes > 8 * (N - 1), "index too small");
        // unconditionally write first `N - 1` limbs.
        for i in 0..(N - 1) {
            other.write_all(&self.buffers[i])?;
        }
        // for the `N`-th limb, depending on `index`, we can write anywhere from
        // 1 to all bytes.
        let remaining_bytes = num_bytes - (8 * (N - 1));
        let write_last_byte = remaining_bytes > 8;
        let num_last_limb_bytes = ark_std::cmp::min(8, remaining_bytes);
        other.write_all(&self.buffers[N - 1][..num_last_limb_bytes])?;
        if write_last_byte {
            other.write_all(&[self.last])?;
        }
        Ok(())
    }

    #[inline(always)]
    /// Read up to `num_bytes` bytes from `other` to `self`.
    /// `num_bytes` is allowed to range from `8 * (N - 1)` to `8 * N + 1`.
    pub(super) fn read_exact_up_to(
        &mut self,
        mut other: impl Read,
        num_bytes: usize,
    ) -> ark_std::io::Result<()> {
        debug_assert!(num_bytes <= 8 * N + 1, "index too large");
        debug_assert!(num_bytes > 8 * (N - 1), "index too small");
        // unconditionally write first `N - 1` limbs.
        for i in 0..(N - 1) {
            other.read_exact(&mut self.buffers[i])?;
        }
        // for the `N`-th limb, depending on `index`, we can write anywhere from
        // 1 to all bytes.
        let remaining_bytes = num_bytes - (8 * (N - 1));
        let write_last_byte = remaining_bytes > 8;
        let num_last_limb_bytes = ark_std::cmp::min(8, remaining_bytes);
        other.read_exact(&mut self.buffers[N - 1][..num_last_limb_bytes])?;
        if write_last_byte {
            let mut last = [0u8; 1];
            other.read_exact(&mut last)?;
            self.last = last[0];
        }
        Ok(())
    }
}

impl<const N: usize> Index<usize> for SerBuffer<N> {
    type Output = u8;
    #[inline(always)]
    fn index(&self, index: usize) -> &Self::Output {
        self.get(index)
    }
}

impl<const N: usize> IndexMut<usize> for SerBuffer<N> {
    #[inline(always)]
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        self.get_mut(index)
    }
}

pub(super) struct RBuffer<const N: usize>(pub [u64; N], pub u64);

impl<const N: usize> RBuffer<N> {
    /// Find the number of bits in the binary decomposition of `self`.
    pub(super) const fn num_bits(&self) -> u32 {
        (N * 64) as u32 + (64 - self.1.leading_zeros())
    }

    /// Returns the `i`-th bit where bit 0 is the least significant one.
    /// In other words, the bit with weight `2^i`.
    pub(super) const fn get_bit(&self, i: usize) -> bool {
        let d = i / 64;
        let b = i % 64;
        if d == N {
            (self.1 >> b) & 1 == 1
        } else {
            (self.0[d] >> b) & 1 == 1
        }
    }
}

pub(super) struct R2Buffer<const N: usize>(pub [u64; N], pub [u64; N], pub u64);

impl<const N: usize> R2Buffer<N> {
    /// Find the number of bits in the binary decomposition of `self`.
    pub(super) const fn num_bits(&self) -> u32 {
        ((2 * N) * 64) as u32 + (64 - self.2.leading_zeros())
    }

    /// Returns the `i`-th bit where bit 0 is the least significant one.
    /// In other words, the bit with weight `2^i`.
    pub(super) const fn get_bit(&self, i: usize) -> bool {
        let d = i / 64;
        let b = i % 64;
        if d == 2 * N {
            (self.2 >> b) & 1 == 1
        } else if d >= N {
            (self.1[d - N] >> b) & 1 == 1
        } else {
            (self.0[d] >> b) & 1 == 1
        }
    }
}

mod tests {
    #[test]
    fn test_mul_buffer_correctness() {
        use super::*;
        type Buf = MulBuffer<10>;
        let temp = Buf::new([10u64; 10], [20u64; 10]);

        for i in 0..20 {
            if i < 10 {
                assert_eq!(temp[i], 10);
            } else {
                assert_eq!(temp[i], 20);
            }
        }
    }

    #[test]
    #[should_panic]
    fn test_mul_buffer_soundness() {
        use super::*;
        type Buf = MulBuffer<10>;
        let temp = Buf::new([10u64; 10], [10u64; 10]);

        for i in 20..21 {
            // indexing `temp[20]` should panic
            assert_eq!(temp[i], 10);
        }
    }
}