ark_ff/biginteger/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
use crate::{
bits::{BitIteratorBE, BitIteratorLE},
const_for, UniformRand,
};
#[allow(unused)]
use ark_ff_macros::unroll_for_loops;
use ark_serialize::{
CanonicalDeserialize, CanonicalSerialize, Compress, SerializationError, Valid, Validate,
};
use ark_std::{
borrow::Borrow,
// convert::TryFrom,
fmt::{Debug, Display, UpperHex},
io::{Read, Write},
ops::{
BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Not, Shl, ShlAssign, Shr,
ShrAssign,
},
rand::{
distributions::{Distribution, Standard},
Rng,
},
str::FromStr,
vec::*,
};
use num_bigint::BigUint;
use zeroize::Zeroize;
#[macro_use]
pub mod arithmetic;
#[derive(Copy, Clone, PartialEq, Eq, Hash, Zeroize)]
pub struct BigInt<const N: usize>(pub [u64; N]);
impl<const N: usize> Default for BigInt<N> {
fn default() -> Self {
Self([0u64; N])
}
}
impl<const N: usize> CanonicalSerialize for BigInt<N> {
fn serialize_with_mode<W: Write>(
&self,
writer: W,
compress: Compress,
) -> Result<(), SerializationError> {
self.0.serialize_with_mode(writer, compress)
}
fn serialized_size(&self, compress: Compress) -> usize {
self.0.serialized_size(compress)
}
}
impl<const N: usize> Valid for BigInt<N> {
fn check(&self) -> Result<(), SerializationError> {
self.0.check()
}
}
impl<const N: usize> CanonicalDeserialize for BigInt<N> {
fn deserialize_with_mode<R: Read>(
reader: R,
compress: Compress,
validate: Validate,
) -> Result<Self, SerializationError> {
Ok(BigInt::<N>(<[u64; N]>::deserialize_with_mode(
reader, compress, validate,
)?))
}
}
/// Construct a [`struct@BigInt<N>`] element from a literal string.
///
/// # Panics
///
/// If the integer represented by the string cannot fit in the number
/// of limbs of the `BigInt`, this macro results in a
/// * compile-time error if used in a const context
/// * run-time error otherwise.
///
/// # Usage
/// ```rust
/// # use ark_ff::BigInt;
/// const ONE: BigInt<6> = BigInt!("1");
///
/// fn check_correctness() {
/// assert_eq!(ONE, BigInt::from(1u8));
/// }
/// ```
#[macro_export]
macro_rules! BigInt {
($c0:expr) => {{
let (is_positive, limbs) = $crate::ark_ff_macros::to_sign_and_limbs!($c0);
assert!(is_positive);
let mut integer = $crate::BigInt::zero();
assert!(integer.0.len() >= limbs.len());
$crate::const_for!((i in 0..(limbs.len())) {
integer.0[i] = limbs[i];
});
integer
}};
}
#[doc(hidden)]
macro_rules! const_modulo {
($a:expr, $divisor:expr) => {{
// Stupid slow base-2 long division taken from
// https://en.wikipedia.org/wiki/Division_algorithm
assert!(!$divisor.const_is_zero());
let mut remainder = Self::new([0u64; N]);
let mut i = ($a.num_bits() - 1) as isize;
let mut carry;
while i >= 0 {
(remainder, carry) = remainder.const_mul2_with_carry();
remainder.0[0] |= $a.get_bit(i as usize) as u64;
if remainder.const_geq($divisor) || carry {
let (r, borrow) = remainder.const_sub_with_borrow($divisor);
remainder = r;
assert!(borrow == carry);
}
i -= 1;
}
remainder
}};
}
impl<const N: usize> BigInt<N> {
pub const fn new(value: [u64; N]) -> Self {
Self(value)
}
pub const fn zero() -> Self {
Self([0u64; N])
}
pub const fn one() -> Self {
let mut one = Self::zero();
one.0[0] = 1;
one
}
#[doc(hidden)]
pub const fn const_is_even(&self) -> bool {
self.0[0] % 2 == 0
}
#[doc(hidden)]
pub const fn const_is_odd(&self) -> bool {
self.0[0] % 2 == 1
}
#[doc(hidden)]
pub const fn mod_4(&self) -> u8 {
// To compute n % 4, we need to simply look at the
// 2 least significant bits of n, and check their value mod 4.
(((self.0[0] << 62) >> 62) % 4) as u8
}
/// Compute a right shift of `self`
/// This is equivalent to a (saturating) division by 2.
#[doc(hidden)]
pub const fn const_shr(&self) -> Self {
let mut result = *self;
let mut t = 0;
crate::const_for!((i in 0..N) {
let a = result.0[N - i - 1];
let t2 = a << 63;
result.0[N - i - 1] >>= 1;
result.0[N - i - 1] |= t;
t = t2;
});
result
}
const fn const_geq(&self, other: &Self) -> bool {
const_for!((i in 0..N) {
let a = self.0[N - i - 1];
let b = other.0[N - i - 1];
if a < b {
return false;
} else if a > b {
return true;
}
});
true
}
/// Compute the largest integer `s` such that `self = 2**s * t + 1` for odd `t`.
#[doc(hidden)]
pub const fn two_adic_valuation(mut self) -> u32 {
assert!(self.const_is_odd());
let mut two_adicity = 0;
// Since `self` is odd, we can always subtract one
// without a borrow
self.0[0] -= 1;
while self.const_is_even() {
self = self.const_shr();
two_adicity += 1;
}
two_adicity
}
/// Compute the smallest odd integer `t` such that `self = 2**s * t + 1` for some
/// integer `s = self.two_adic_valuation()`.
#[doc(hidden)]
pub const fn two_adic_coefficient(mut self) -> Self {
assert!(self.const_is_odd());
// Since `self` is odd, we can always subtract one
// without a borrow
self.0[0] -= 1;
while self.const_is_even() {
self = self.const_shr();
}
assert!(self.const_is_odd());
self
}
/// Divide `self` by 2, rounding down if necessary.
/// That is, if `self.is_odd()`, compute `(self - 1)/2`.
/// Else, compute `self/2`.
#[doc(hidden)]
pub const fn divide_by_2_round_down(mut self) -> Self {
if self.const_is_odd() {
self.0[0] -= 1;
}
self.const_shr()
}
/// Find the number of bits in the binary decomposition of `self`.
#[doc(hidden)]
pub const fn const_num_bits(self) -> u32 {
((N - 1) * 64) as u32 + (64 - self.0[N - 1].leading_zeros())
}
#[inline]
pub(crate) const fn const_sub_with_borrow(mut self, other: &Self) -> (Self, bool) {
let mut borrow = 0;
const_for!((i in 0..N) {
self.0[i] = sbb!(self.0[i], other.0[i], &mut borrow);
});
(self, borrow != 0)
}
#[inline]
pub(crate) const fn const_add_with_carry(mut self, other: &Self) -> (Self, bool) {
let mut carry = 0;
crate::const_for!((i in 0..N) {
self.0[i] = adc!(self.0[i], other.0[i], &mut carry);
});
(self, carry != 0)
}
const fn const_mul2_with_carry(mut self) -> (Self, bool) {
let mut last = 0;
crate::const_for!((i in 0..N) {
let a = self.0[i];
let tmp = a >> 63;
self.0[i] <<= 1;
self.0[i] |= last;
last = tmp;
});
(self, last != 0)
}
pub(crate) const fn const_is_zero(&self) -> bool {
let mut is_zero = true;
crate::const_for!((i in 0..N) {
is_zero &= self.0[i] == 0;
});
is_zero
}
/// Computes the Montgomery R constant modulo `self`.
#[doc(hidden)]
pub const fn montgomery_r(&self) -> Self {
let two_pow_n_times_64 = crate::const_helpers::RBuffer::<N>([0u64; N], 1);
const_modulo!(two_pow_n_times_64, self)
}
/// Computes the Montgomery R2 constant modulo `self`.
#[doc(hidden)]
pub const fn montgomery_r2(&self) -> Self {
let two_pow_n_times_64_square =
crate::const_helpers::R2Buffer::<N>([0u64; N], [0u64; N], 1);
const_modulo!(two_pow_n_times_64_square, self)
}
}
impl<const N: usize> BigInteger for BigInt<N> {
const NUM_LIMBS: usize = N;
#[unroll_for_loops(6)]
#[inline]
fn add_with_carry(&mut self, other: &Self) -> bool {
let mut carry = 0;
for i in 0..N {
carry = arithmetic::adc_for_add_with_carry(&mut self.0[i], other.0[i], carry);
}
carry != 0
}
#[unroll_for_loops(6)]
#[inline]
fn sub_with_borrow(&mut self, other: &Self) -> bool {
let mut borrow = 0;
for i in 0..N {
borrow = arithmetic::sbb_for_sub_with_borrow(&mut self.0[i], other.0[i], borrow);
}
borrow != 0
}
#[inline]
#[allow(unused)]
fn mul2(&mut self) -> bool {
#[cfg(all(target_arch = "x86_64", feature = "asm"))]
#[allow(unsafe_code)]
{
let mut carry = 0;
for i in 0..N {
unsafe {
use core::arch::x86_64::_addcarry_u64;
carry = _addcarry_u64(carry, self.0[i], self.0[i], &mut self.0[i])
};
}
carry != 0
}
#[cfg(not(all(target_arch = "x86_64", feature = "asm")))]
{
let mut last = 0;
for i in 0..N {
let a = &mut self.0[i];
let tmp = *a >> 63;
*a <<= 1;
*a |= last;
last = tmp;
}
last != 0
}
}
#[inline]
fn muln(&mut self, mut n: u32) {
if n >= (64 * N) as u32 {
*self = Self::from(0u64);
return;
}
while n >= 64 {
let mut t = 0;
for i in 0..N {
core::mem::swap(&mut t, &mut self.0[i]);
}
n -= 64;
}
if n > 0 {
let mut t = 0;
#[allow(unused)]
for i in 0..N {
let a = &mut self.0[i];
let t2 = *a >> (64 - n);
*a <<= n;
*a |= t;
t = t2;
}
}
}
#[inline]
fn mul(&self, other: &Self) -> (Self, Self) {
if self.is_zero() || other.is_zero() {
let zero = Self::zero();
return (zero, zero);
}
let mut r = crate::const_helpers::MulBuffer::<N>::zeroed();
let mut carry = 0;
for i in 0..N {
for j in 0..N {
r[i + j] = mac_with_carry!(r[i + j], self.0[i], other.0[j], &mut carry);
}
r.b1[i] = carry;
carry = 0;
}
(Self(r.b0), Self(r.b1))
}
#[inline]
fn mul_low(&self, other: &Self) -> Self {
if self.is_zero() || other.is_zero() {
return Self::zero();
}
let mut res = Self::zero();
let mut carry = 0;
for i in 0..N {
for j in 0..(N - i) {
res.0[i + j] = mac_with_carry!(res.0[i + j], self.0[i], other.0[j], &mut carry);
}
carry = 0;
}
res
}
#[inline]
fn mul_high(&self, other: &Self) -> Self {
self.mul(other).1
}
#[inline]
fn div2(&mut self) {
let mut t = 0;
for a in self.0.iter_mut().rev() {
let t2 = *a << 63;
*a >>= 1;
*a |= t;
t = t2;
}
}
#[inline]
fn divn(&mut self, mut n: u32) {
if n >= (64 * N) as u32 {
*self = Self::from(0u64);
return;
}
while n >= 64 {
let mut t = 0;
for i in 0..N {
core::mem::swap(&mut t, &mut self.0[N - i - 1]);
}
n -= 64;
}
if n > 0 {
let mut t = 0;
#[allow(unused)]
for i in 0..N {
let a = &mut self.0[N - i - 1];
let t2 = *a << (64 - n);
*a >>= n;
*a |= t;
t = t2;
}
}
}
#[inline]
fn is_odd(&self) -> bool {
self.0[0] & 1 == 1
}
#[inline]
fn is_even(&self) -> bool {
!self.is_odd()
}
#[inline]
fn is_zero(&self) -> bool {
self.0.iter().all(|&e| e == 0)
}
#[inline]
fn num_bits(&self) -> u32 {
let mut ret = N as u32 * 64;
for i in self.0.iter().rev() {
let leading = i.leading_zeros();
ret -= leading;
if leading != 64 {
break;
}
}
ret
}
#[inline]
fn get_bit(&self, i: usize) -> bool {
if i >= 64 * N {
false
} else {
let limb = i / 64;
let bit = i - (64 * limb);
(self.0[limb] & (1 << bit)) != 0
}
}
#[inline]
fn from_bits_be(bits: &[bool]) -> Self {
let mut bits = bits.to_vec();
bits.reverse();
Self::from_bits_le(&bits)
}
fn from_bits_le(bits: &[bool]) -> Self {
let mut res = Self::zero();
for (bits64, res_i) in bits.chunks(64).zip(&mut res.0) {
for (i, bit) in bits64.iter().enumerate() {
*res_i |= (*bit as u64) << i;
}
}
res
}
#[inline]
fn to_bytes_be(&self) -> Vec<u8> {
let mut le_bytes = self.to_bytes_le();
le_bytes.reverse();
le_bytes
}
#[inline]
fn to_bytes_le(&self) -> Vec<u8> {
let array_map = self.0.iter().map(|limb| limb.to_le_bytes());
let mut res = Vec::with_capacity(N * 8);
for limb in array_map {
res.extend_from_slice(&limb);
}
res
}
}
impl<const N: usize> UpperHex for BigInt<N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "{:016X}", BigUint::from(*self))
}
}
impl<const N: usize> Debug for BigInt<N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "{:?}", BigUint::from(*self))
}
}
impl<const N: usize> Display for BigInt<N> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "{}", BigUint::from(*self))
}
}
impl<const N: usize> Ord for BigInt<N> {
#[inline]
#[cfg_attr(target_arch = "x86_64", unroll_for_loops(12))]
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
use core::cmp::Ordering;
#[cfg(target_arch = "x86_64")]
for i in 0..N {
let a = &self.0[N - i - 1];
let b = &other.0[N - i - 1];
match a.cmp(b) {
Ordering::Equal => {},
order => return order,
};
}
#[cfg(not(target_arch = "x86_64"))]
for (a, b) in self.0.iter().rev().zip(other.0.iter().rev()) {
if a < b {
return Ordering::Less;
} else if a > b {
return Ordering::Greater;
}
}
Ordering::Equal
}
}
impl<const N: usize> PartialOrd for BigInt<N> {
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<const N: usize> Distribution<BigInt<N>> for Standard {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> BigInt<N> {
let mut res = [0u64; N];
for item in res.iter_mut() {
*item = rng.gen();
}
BigInt::<N>(res)
}
}
impl<const N: usize> AsMut<[u64]> for BigInt<N> {
#[inline]
fn as_mut(&mut self) -> &mut [u64] {
&mut self.0
}
}
impl<const N: usize> AsRef<[u64]> for BigInt<N> {
#[inline]
fn as_ref(&self) -> &[u64] {
&self.0
}
}
impl<const N: usize> From<u64> for BigInt<N> {
#[inline]
fn from(val: u64) -> BigInt<N> {
let mut repr = Self::default();
repr.0[0] = val;
repr
}
}
impl<const N: usize> From<u32> for BigInt<N> {
#[inline]
fn from(val: u32) -> BigInt<N> {
let mut repr = Self::default();
repr.0[0] = u64::from(val);
repr
}
}
impl<const N: usize> From<u16> for BigInt<N> {
#[inline]
fn from(val: u16) -> BigInt<N> {
let mut repr = Self::default();
repr.0[0] = u64::from(val);
repr
}
}
impl<const N: usize> From<u8> for BigInt<N> {
#[inline]
fn from(val: u8) -> BigInt<N> {
let mut repr = Self::default();
repr.0[0] = u64::from(val);
repr
}
}
impl<const N: usize> TryFrom<BigUint> for BigInt<N> {
type Error = ();
/// Returns `Err(())` if the bit size of `val` is more than `N * 64`.
#[inline]
fn try_from(val: num_bigint::BigUint) -> Result<BigInt<N>, Self::Error> {
let bytes = val.to_bytes_le();
if bytes.len() > N * 8 {
Err(())
} else {
let mut limbs = [0u64; N];
bytes
.chunks(8)
.into_iter()
.enumerate()
.for_each(|(i, chunk)| {
let mut chunk_padded = [0u8; 8];
chunk_padded[..chunk.len()].copy_from_slice(chunk);
limbs[i] = u64::from_le_bytes(chunk_padded)
});
Ok(Self(limbs))
}
}
}
impl<const N: usize> FromStr for BigInt<N> {
type Err = ();
fn from_str(s: &str) -> Result<Self, Self::Err> {
let biguint = BigUint::from_str(s).map_err(|_| ())?;
Self::try_from(biguint)
}
}
impl<const N: usize> From<BigInt<N>> for BigUint {
#[inline]
fn from(val: BigInt<N>) -> num_bigint::BigUint {
BigUint::from_bytes_le(&val.to_bytes_le())
}
}
impl<const N: usize> From<BigInt<N>> for num_bigint::BigInt {
#[inline]
fn from(val: BigInt<N>) -> num_bigint::BigInt {
use num_bigint::Sign;
let sign = if val.is_zero() {
Sign::NoSign
} else {
Sign::Plus
};
num_bigint::BigInt::from_bytes_le(sign, &val.to_bytes_le())
}
}
impl<B: Borrow<Self>, const N: usize> BitXorAssign<B> for BigInt<N> {
fn bitxor_assign(&mut self, rhs: B) {
(0..N).for_each(|i| self.0[i] ^= rhs.borrow().0[i])
}
}
impl<B: Borrow<Self>, const N: usize> BitXor<B> for BigInt<N> {
type Output = Self;
fn bitxor(mut self, rhs: B) -> Self::Output {
self ^= rhs;
self
}
}
impl<B: Borrow<Self>, const N: usize> BitAndAssign<B> for BigInt<N> {
fn bitand_assign(&mut self, rhs: B) {
(0..N).for_each(|i| self.0[i] &= rhs.borrow().0[i])
}
}
impl<B: Borrow<Self>, const N: usize> BitAnd<B> for BigInt<N> {
type Output = Self;
fn bitand(mut self, rhs: B) -> Self::Output {
self &= rhs;
self
}
}
impl<B: Borrow<Self>, const N: usize> BitOrAssign<B> for BigInt<N> {
fn bitor_assign(&mut self, rhs: B) {
(0..N).for_each(|i| self.0[i] |= rhs.borrow().0[i])
}
}
impl<B: Borrow<Self>, const N: usize> BitOr<B> for BigInt<N> {
type Output = Self;
fn bitor(mut self, rhs: B) -> Self::Output {
self |= rhs;
self
}
}
impl<const N: usize> ShrAssign<u32> for BigInt<N> {
/// Computes the bitwise shift right operation in place.
///
/// Differently from the built-in numeric types (u8, u32, u64, etc.) this
/// operation does *not* return an underflow error if the number of bits
/// shifted is larger than N * 64. Instead the result will be saturated to
/// zero.
fn shr_assign(&mut self, mut rhs: u32) {
if rhs >= (64 * N) as u32 {
*self = Self::from(0u64);
return;
}
while rhs >= 64 {
let mut t = 0;
for limb in self.0.iter_mut().rev() {
core::mem::swap(&mut t, limb);
}
rhs -= 64;
}
if rhs > 0 {
let mut t = 0;
for a in self.0.iter_mut().rev() {
let t2 = *a << (64 - rhs);
*a >>= rhs;
*a |= t;
t = t2;
}
}
}
}
impl<const N: usize> Shr<u32> for BigInt<N> {
type Output = Self;
/// Computes bitwise shift right operation.
///
/// Differently from the built-in numeric types (u8, u32, u64, etc.) this
/// operation does *not* return an underflow error if the number of bits
/// shifted is larger than N * 64. Instead the result will be saturated to
/// zero.
fn shr(mut self, rhs: u32) -> Self::Output {
self >>= rhs;
self
}
}
impl<const N: usize> ShlAssign<u32> for BigInt<N> {
/// Computes the bitwise shift left operation in place.
///
/// Differently from the built-in numeric types (u8, u32, u64, etc.) this
/// operation does *not* return an overflow error if the number of bits
/// shifted is larger than N * 64. Instead, the overflow will be chopped
/// off.
fn shl_assign(&mut self, mut rhs: u32) {
if rhs >= (64 * N) as u32 {
*self = Self::from(0u64);
return;
}
while rhs >= 64 {
let mut t = 0;
for i in 0..N {
core::mem::swap(&mut t, &mut self.0[i]);
}
rhs -= 64;
}
if rhs > 0 {
let mut t = 0;
#[allow(unused)]
for i in 0..N {
let a = &mut self.0[i];
let t2 = *a >> (64 - rhs);
*a <<= rhs;
*a |= t;
t = t2;
}
}
}
}
impl<const N: usize> Shl<u32> for BigInt<N> {
type Output = Self;
/// Computes the bitwise shift left operation in place.
///
/// Differently from the built-in numeric types (u8, u32, u64, etc.) this
/// operation does *not* return an overflow error if the number of bits
/// shifted is larger than N * 64. Instead, the overflow will be chopped
/// off.
fn shl(mut self, rhs: u32) -> Self::Output {
self <<= rhs;
self
}
}
impl<const N: usize> Not for BigInt<N> {
type Output = Self;
fn not(self) -> Self::Output {
let mut result = Self::zero();
for i in 0..N {
result.0[i] = !self.0[i];
}
result
}
}
/// Compute the signed modulo operation on a u64 representation, returning the result.
/// If n % modulus > modulus / 2, return modulus - n
/// # Example
/// ```
/// use ark_ff::signed_mod_reduction;
/// let res = signed_mod_reduction(6u64, 8u64);
/// assert_eq!(res, -2i64);
/// ```
pub fn signed_mod_reduction(n: u64, modulus: u64) -> i64 {
let t = (n % modulus) as i64;
if t as u64 >= (modulus / 2) {
t - (modulus as i64)
} else {
t
}
}
pub type BigInteger64 = BigInt<1>;
pub type BigInteger128 = BigInt<2>;
pub type BigInteger256 = BigInt<4>;
pub type BigInteger320 = BigInt<5>;
pub type BigInteger384 = BigInt<6>;
pub type BigInteger448 = BigInt<7>;
pub type BigInteger768 = BigInt<12>;
pub type BigInteger832 = BigInt<13>;
#[cfg(test)]
mod tests;
/// This defines a `BigInteger`, a smart wrapper around a
/// sequence of `u64` limbs, least-significant limb first.
// TODO: get rid of this trait once we can use associated constants in const generics.
pub trait BigInteger:
CanonicalSerialize
+ CanonicalDeserialize
+ Copy
+ Clone
+ Debug
+ Default
+ Display
+ Eq
+ Ord
+ Send
+ Sized
+ Sync
+ 'static
+ UniformRand
+ Zeroize
+ AsMut<[u64]>
+ AsRef<[u64]>
+ From<u64>
+ From<u32>
+ From<u16>
+ From<u8>
+ TryFrom<BigUint, Error = ()>
+ FromStr
+ Into<BigUint>
+ BitXorAssign<Self>
+ for<'a> BitXorAssign<&'a Self>
+ BitXor<Self, Output = Self>
+ for<'a> BitXor<&'a Self, Output = Self>
+ BitAndAssign<Self>
+ for<'a> BitAndAssign<&'a Self>
+ BitAnd<Self, Output = Self>
+ for<'a> BitAnd<&'a Self, Output = Self>
+ BitOrAssign<Self>
+ for<'a> BitOrAssign<&'a Self>
+ BitOr<Self, Output = Self>
+ for<'a> BitOr<&'a Self, Output = Self>
+ Shr<u32, Output = Self>
+ ShrAssign<u32>
+ Shl<u32, Output = Self>
+ ShlAssign<u32>
{
/// Number of 64-bit limbs representing `Self`.
const NUM_LIMBS: usize;
/// Add another [`BigInteger`] to `self`. This method stores the result in `self`,
/// and returns a carry bit.
///
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let (mut one, mut x) = (B::from(1u64), B::from(2u64));
/// let carry = x.add_with_carry(&one);
/// assert_eq!(x, B::from(3u64));
/// assert_eq!(carry, false);
///
/// // Edge-Case
/// let mut x = B::from(u64::MAX);
/// let carry = x.add_with_carry(&one);
/// assert_eq!(x, B::from(0u64));
/// assert_eq!(carry, true)
/// ```
fn add_with_carry(&mut self, other: &Self) -> bool;
/// Subtract another [`BigInteger`] from this one. This method stores the result in
/// `self`, and returns a borrow.
///
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let (mut one_sub, two, mut three_sub) = (B::from(1u64), B::from(2u64), B::from(3u64));
/// let borrow = three_sub.sub_with_borrow(&two);
/// assert_eq!(three_sub, one_sub);
/// assert_eq!(borrow, false);
///
/// // Edge-Case
/// let borrow = one_sub.sub_with_borrow(&two);
/// assert_eq!(one_sub, B::from(u64::MAX));
/// assert_eq!(borrow, true);
/// ```
fn sub_with_borrow(&mut self, other: &Self) -> bool;
/// Performs a leftwise bitshift of this number, effectively multiplying
/// it by 2. Overflow is ignored.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let mut two_mul = B::from(2u64);
/// two_mul.mul2();
/// assert_eq!(two_mul, B::from(4u64));
///
/// // Edge-Cases
/// let mut zero = B::from(0u64);
/// zero.mul2();
/// assert_eq!(zero, B::from(0u64));
///
/// let mut arr: [bool; 64] = [false; 64];
/// arr[0] = true;
/// let mut mul = B::from_bits_be(&arr);
/// mul.mul2();
/// assert_eq!(mul, B::from(0u64));
/// ```
fn mul2(&mut self) -> bool;
/// Performs a leftwise bitshift of this number by n bits, effectively multiplying
/// it by 2^n. Overflow is ignored.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let mut one_mul = B::from(1u64);
/// one_mul.muln(5);
/// assert_eq!(one_mul, B::from(32u64));
///
/// // Edge-Case
/// let mut zero = B::from(0u64);
/// zero.muln(5);
/// assert_eq!(zero, B::from(0u64));
///
/// let mut arr: [bool; 64] = [false; 64];
/// arr[4] = true;
/// let mut mul = B::from_bits_be(&arr);
/// mul.muln(5);
/// assert_eq!(mul, B::from(0u64));
/// ```
#[deprecated(since = "0.4.2", note = "please use the operator `<<` instead")]
fn muln(&mut self, amt: u32);
/// Multiplies this [`BigInteger`] by another `BigInteger`, storing the result in `self`.
/// Overflow is ignored.
///
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let mut a = B::from(42u64);
/// let b = B::from(3u64);
/// assert_eq!(a.mul_low(&b), B::from(126u64));
///
/// // Edge-Case
/// let mut zero = B::from(0u64);
/// assert_eq!(zero.mul_low(&B::from(5u64)), B::from(0u64));
/// ```
fn mul_low(&self, other: &Self) -> Self;
/// Multiplies this [`BigInteger`] by another `BigInteger`, returning the high bits of the result.
///
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let (one, x) = (B::from(1u64), B::from(2u64));
/// let r = x.mul_high(&one);
/// assert_eq!(r, B::from(0u64));
///
/// // Edge-Case
/// let mut x = B::from(u64::MAX);
/// let r = x.mul_high(&B::from(2u64));
/// assert_eq!(r, B::from(1u64))
/// ```
fn mul_high(&self, other: &Self) -> Self;
/// Multiplies this [`BigInteger`] by another `BigInteger`, returning both low and high bits of the result.
///
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let mut a = B::from(42u64);
/// let b = B::from(3u64);
/// let (low_bits, high_bits) = a.mul(&b);
/// assert_eq!(low_bits, B::from(126u64));
/// assert_eq!(high_bits, B::from(0u64));
///
/// // Edge-Case
/// let mut x = B::from(u64::MAX);
/// let mut max_plus_max = x;
/// max_plus_max.add_with_carry(&x);
/// let (low_bits, high_bits) = x.mul(&B::from(2u64));
/// assert_eq!(low_bits, max_plus_max);
/// assert_eq!(high_bits, B::from(1u64));
/// ```
fn mul(&self, other: &Self) -> (Self, Self);
/// Performs a rightwise bitshift of this number, effectively dividing
/// it by 2.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let (mut two, mut four_div) = (B::from(2u64), B::from(4u64));
/// four_div.div2();
/// assert_eq!(two, four_div);
///
/// // Edge-Case
/// let mut zero = B::from(0u64);
/// zero.div2();
/// assert_eq!(zero, B::from(0u64));
///
/// let mut one = B::from(1u64);
/// one.div2();
/// assert_eq!(one, B::from(0u64));
/// ```
fn div2(&mut self);
/// Performs a rightwise bitshift of this number by some amount.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// // Basic
/// let (mut one, mut thirty_two_div) = (B::from(1u64), B::from(32u64));
/// thirty_two_div.divn(5);
/// assert_eq!(one, thirty_two_div);
///
/// // Edge-Case
/// let mut arr: [bool; 64] = [false; 64];
/// arr[4] = true;
/// let mut div = B::from_bits_le(&arr);
/// div.divn(5);
/// assert_eq!(div, B::from(0u64));
/// ```
#[deprecated(since = "0.4.2", note = "please use the operator `>>` instead")]
fn divn(&mut self, amt: u32);
/// Returns true iff this number is odd.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let mut one = B::from(1u64);
/// assert!(one.is_odd());
/// ```
fn is_odd(&self) -> bool;
/// Returns true iff this number is even.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let mut two = B::from(2u64);
/// assert!(two.is_even());
/// ```
fn is_even(&self) -> bool;
/// Returns true iff this number is zero.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let mut zero = B::from(0u64);
/// assert!(zero.is_zero());
/// ```
fn is_zero(&self) -> bool;
/// Compute the minimum number of bits needed to encode this number.
/// # Example
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let zero = B::from(0u64);
/// assert_eq!(zero.num_bits(), 0);
/// let one = B::from(1u64);
/// assert_eq!(one.num_bits(), 1);
/// let max = B::from(u64::MAX);
/// assert_eq!(max.num_bits(), 64);
/// let u32_max = B::from(u32::MAX as u64);
/// assert_eq!(u32_max.num_bits(), 32);
/// ```
fn num_bits(&self) -> u32;
/// Compute the `i`-th bit of `self`.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let mut one = B::from(1u64);
/// assert!(one.get_bit(0));
/// assert!(!one.get_bit(1));
/// ```
fn get_bit(&self, i: usize) -> bool;
/// Returns the big integer representation of a given big endian boolean
/// array.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let mut arr: [bool; 64] = [false; 64];
/// arr[63] = true;
/// let mut one = B::from(1u64);
/// assert_eq!(B::from_bits_be(&arr), one);
/// ```
fn from_bits_be(bits: &[bool]) -> Self;
/// Returns the big integer representation of a given little endian boolean
/// array.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let mut arr: [bool; 64] = [false; 64];
/// arr[0] = true;
/// let mut one = B::from(1u64);
/// assert_eq!(B::from_bits_le(&arr), one);
/// ```
fn from_bits_le(bits: &[bool]) -> Self;
/// Returns the bit representation in a big endian boolean array,
/// with leading zeroes.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let one = B::from(1u64);
/// let arr = one.to_bits_be();
/// let mut vec = vec![false; 64];
/// vec[63] = true;
/// assert_eq!(arr, vec);
/// ```
fn to_bits_be(&self) -> Vec<bool> {
BitIteratorBE::new(self).collect::<Vec<_>>()
}
/// Returns the bit representation in a little endian boolean array,
/// with trailing zeroes.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let one = B::from(1u64);
/// let arr = one.to_bits_le();
/// let mut vec = vec![false; 64];
/// vec[0] = true;
/// assert_eq!(arr, vec);
/// ```
fn to_bits_le(&self) -> Vec<bool> {
BitIteratorLE::new(self).collect::<Vec<_>>()
}
/// Returns the byte representation in a big endian byte array,
/// with leading zeros.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let one = B::from(1u64);
/// let arr = one.to_bytes_be();
/// let mut vec = vec![0; 8];
/// vec[7] = 1;
/// assert_eq!(arr, vec);
/// ```
fn to_bytes_be(&self) -> Vec<u8>;
/// Returns the byte representation in a little endian byte array,
/// with trailing zeros.
/// # Example
///
/// ```
/// use ark_ff::{biginteger::BigInteger64 as B, BigInteger as _};
///
/// let one = B::from(1u64);
/// let arr = one.to_bytes_le();
/// let mut vec = vec![0; 8];
/// vec[0] = 1;
/// assert_eq!(arr, vec);
/// ```
fn to_bytes_le(&self) -> Vec<u8>;
/// Returns the windowed non-adjacent form of `self`, for a window of size `w`.
fn find_wnaf(&self, w: usize) -> Option<Vec<i64>> {
// w > 2 due to definition of wNAF, and w < 64 to make sure that `i64`
// can fit each signed digit
if (2..64).contains(&w) {
let mut res = vec![];
let mut e = *self;
while !e.is_zero() {
let z: i64;
if e.is_odd() {
z = signed_mod_reduction(e.as_ref()[0], 1 << w);
if z >= 0 {
e.sub_with_borrow(&Self::from(z as u64));
} else {
e.add_with_carry(&Self::from((-z) as u64));
}
} else {
z = 0;
}
res.push(z);
e.div2();
}
Some(res)
} else {
None
}
}
}