ark_ff/fields/models/
fp2.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
use super::quadratic_extension::{QuadExtConfig, QuadExtField};
use crate::{fields::PrimeField, CyclotomicMultSubgroup, Zero};
use core::{marker::PhantomData, ops::Not};

/// Trait that specifies constants and methods for defining degree-two extension fields.
pub trait Fp2Config: 'static + Send + Sync + Sized {
    /// Base prime field underlying this extension.
    type Fp: PrimeField;

    /// Quadratic non-residue in [`Self::Fp`] used to construct the extension
    /// field. That is, `NONRESIDUE` is such that the quadratic polynomial
    /// `f(X) = X^2 - Self::NONRESIDUE` in Fp\[X\] is irreducible in `Self::Fp`.
    const NONRESIDUE: Self::Fp;

    /// Coefficients for the Frobenius automorphism.
    const FROBENIUS_COEFF_FP2_C1: &'static [Self::Fp];

    /// Return `fe * Self::NONRESIDUE`.
    /// Intended for specialization when [`Self::NONRESIDUE`] has a special
    /// structure that can speed up multiplication
    #[inline(always)]
    fn mul_fp_by_nonresidue_in_place(fe: &mut Self::Fp) -> &mut Self::Fp {
        *fe *= Self::NONRESIDUE;
        fe
    }

    /// A specializable method for setting `y = x + NONRESIDUE * y`.
    /// This allows for optimizations when the non-residue is
    /// canonically negative in the field.
    #[inline(always)]
    fn mul_fp_by_nonresidue_and_add(y: &mut Self::Fp, x: &Self::Fp) {
        Self::mul_fp_by_nonresidue_in_place(y);
        *y += x;
    }

    /// A specializable method for computing x + mul_fp_by_nonresidue(y) + y
    /// This allows for optimizations when the non-residue is not -1.
    #[inline(always)]
    fn mul_fp_by_nonresidue_plus_one_and_add(y: &mut Self::Fp, x: &Self::Fp) {
        let old_y = *y;
        Self::mul_fp_by_nonresidue_and_add(y, x);
        *y += old_y;
    }

    /// A specializable method for computing x - mul_fp_by_nonresidue(y)
    /// This allows for optimizations when the non-residue is
    /// canonically negative in the field.
    #[inline(always)]
    fn sub_and_mul_fp_by_nonresidue(y: &mut Self::Fp, x: &Self::Fp) {
        *y = *x - Self::mul_fp_by_nonresidue_in_place(y);
    }
}

/// Wrapper for [`Fp2Config`], allowing combination of the [`Fp2Config`] and [`QuadExtConfig`] traits.
pub struct Fp2ConfigWrapper<P: Fp2Config>(PhantomData<P>);

impl<P: Fp2Config> QuadExtConfig for Fp2ConfigWrapper<P> {
    type BasePrimeField = P::Fp;
    type BaseField = P::Fp;
    type FrobCoeff = P::Fp;

    const DEGREE_OVER_BASE_PRIME_FIELD: usize = 2;

    const NONRESIDUE: Self::BaseField = P::NONRESIDUE;

    const FROBENIUS_COEFF_C1: &'static [Self::FrobCoeff] = P::FROBENIUS_COEFF_FP2_C1;

    #[inline(always)]
    fn mul_base_field_by_nonresidue_in_place(fe: &mut Self::BaseField) -> &mut Self::BaseField {
        P::mul_fp_by_nonresidue_in_place(fe)
    }

    #[inline(always)]
    fn mul_base_field_by_nonresidue_and_add(y: &mut Self::BaseField, x: &Self::BaseField) {
        P::mul_fp_by_nonresidue_and_add(y, x)
    }

    #[inline(always)]
    fn mul_base_field_by_nonresidue_plus_one_and_add(y: &mut Self::BaseField, x: &Self::BaseField) {
        P::mul_fp_by_nonresidue_plus_one_and_add(y, x)
    }

    #[inline(always)]
    fn sub_and_mul_base_field_by_nonresidue(y: &mut Self::BaseField, x: &Self::BaseField) {
        P::sub_and_mul_fp_by_nonresidue(y, x)
    }

    fn mul_base_field_by_frob_coeff(fe: &mut Self::BaseField, power: usize) {
        *fe *= &Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
    }
}

/// Alias for instances of quadratic extension fields. Helpful for omitting verbose
/// instantiations involving `Fp2ConfigWrapper`.
pub type Fp2<P> = QuadExtField<Fp2ConfigWrapper<P>>;

impl<P: Fp2Config> Fp2<P> {
    /// In-place multiply both coefficients `c0` and `c1` of `self`
    /// by an element from [`Fp`](`Fp2Config::Fp`).
    ///
    /// # Examples
    ///
    /// ```
    /// # use ark_std::test_rng;
    /// # use ark_test_curves::bls12_381::{Fq as Fp, Fq2 as Fp2};
    /// # use ark_std::UniformRand;
    /// let c0: Fp = Fp::rand(&mut test_rng());
    /// let c1: Fp = Fp::rand(&mut test_rng());
    /// let mut ext_element: Fp2 = Fp2::new(c0, c1);
    ///
    /// let base_field_element: Fp = Fp::rand(&mut test_rng());
    /// ext_element.mul_assign_by_fp(&base_field_element);
    ///
    /// assert_eq!(ext_element.c0, c0 * base_field_element);
    /// assert_eq!(ext_element.c1, c1 * base_field_element);
    /// ```
    pub fn mul_assign_by_fp(&mut self, other: &P::Fp) {
        self.c0 *= other;
        self.c1 *= other;
    }
}

impl<P: Fp2Config> CyclotomicMultSubgroup for Fp2<P> {
    const INVERSE_IS_FAST: bool = true;
    fn cyclotomic_inverse_in_place(&mut self) -> Option<&mut Self> {
        // As the multiplicative subgroup is of order p^2 - 1, the
        // only non-trivial cyclotomic subgroup is of order p+1
        // Therefore, for any element in the cyclotomic subgroup, we have that `x^(p+1) = 1`.
        // Recall that `x^(p+1)` in a quadratic extension field is equal
        // to the norm in the base field, so we have that
        // `x * x.conjugate() = 1`. By uniqueness of inverses,
        // for this subgroup, x.inverse() = x.conjugate()

        self.is_zero().not().then(|| {
            self.conjugate_in_place();
            self
        })
    }
}