ark_groth16/
prover.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
use crate::{r1cs_to_qap::R1CSToQAP, Groth16, Proof, ProvingKey, VerifyingKey};
use ark_ec::{pairing::Pairing, AffineRepr, CurveGroup, VariableBaseMSM};
use ark_ff::{Field, PrimeField, UniformRand, Zero};
use ark_poly::GeneralEvaluationDomain;
use ark_relations::r1cs::{
    ConstraintMatrices, ConstraintSynthesizer, ConstraintSystem, OptimizationGoal,
    Result as R1CSResult,
};
use ark_std::rand::Rng;
use ark_std::{
    cfg_into_iter, cfg_iter,
    ops::{AddAssign, Mul},
    vec::Vec,
};

#[cfg(feature = "parallel")]
use rayon::prelude::*;

type D<F> = GeneralEvaluationDomain<F>;

impl<E: Pairing, QAP: R1CSToQAP> Groth16<E, QAP> {
    /// Create a Groth16 proof using randomness `r` and `s` and
    /// the provided R1CS-to-QAP reduction, using the provided
    /// R1CS constraint matrices.
    #[inline]
    pub fn create_proof_with_reduction_and_matrices(
        pk: &ProvingKey<E>,
        r: E::ScalarField,
        s: E::ScalarField,
        matrices: &ConstraintMatrices<E::ScalarField>,
        num_inputs: usize,
        num_constraints: usize,
        full_assignment: &[E::ScalarField],
    ) -> R1CSResult<Proof<E>> {
        let prover_time = start_timer!(|| "Groth16::Prover");
        let witness_map_time = start_timer!(|| "R1CS to QAP witness map");
        let h = QAP::witness_map_from_matrices::<E::ScalarField, D<E::ScalarField>>(
            matrices,
            num_inputs,
            num_constraints,
            full_assignment,
        )?;
        end_timer!(witness_map_time);
        let input_assignment = &full_assignment[1..num_inputs];
        let aux_assignment = &full_assignment[num_inputs..];
        let proof =
            Self::create_proof_with_assignment(pk, r, s, &h, input_assignment, aux_assignment)?;
        end_timer!(prover_time);

        Ok(proof)
    }

    #[inline]
    fn create_proof_with_assignment(
        pk: &ProvingKey<E>,
        r: E::ScalarField,
        s: E::ScalarField,
        h: &[E::ScalarField],
        input_assignment: &[E::ScalarField],
        aux_assignment: &[E::ScalarField],
    ) -> R1CSResult<Proof<E>> {
        let c_acc_time = start_timer!(|| "Compute C");
        let h_assignment = cfg_into_iter!(h)
            .map(|s| s.into_bigint())
            .collect::<Vec<_>>();
        let h_acc = E::G1::msm_bigint(&pk.h_query, &h_assignment);
        drop(h_assignment);

        // Compute C
        let aux_assignment = cfg_iter!(aux_assignment)
            .map(|s| s.into_bigint())
            .collect::<Vec<_>>();

        let l_aux_acc = E::G1::msm_bigint(&pk.l_query, &aux_assignment);

        let r_s_delta_g1 = pk.delta_g1 * (r * s);

        end_timer!(c_acc_time);

        let input_assignment = input_assignment
            .iter()
            .map(|s| s.into_bigint())
            .collect::<Vec<_>>();

        let assignment = [&input_assignment[..], &aux_assignment[..]].concat();
        drop(aux_assignment);

        // Compute A
        let a_acc_time = start_timer!(|| "Compute A");
        let r_g1 = pk.delta_g1.mul(r);

        let g_a = Self::calculate_coeff(r_g1, &pk.a_query, pk.vk.alpha_g1, &assignment);

        let s_g_a = g_a * &s;
        end_timer!(a_acc_time);

        // Compute B in G1 if needed
        let g1_b = if !r.is_zero() {
            let b_g1_acc_time = start_timer!(|| "Compute B in G1");
            let s_g1 = pk.delta_g1.mul(s);
            let g1_b = Self::calculate_coeff(s_g1, &pk.b_g1_query, pk.beta_g1, &assignment);

            end_timer!(b_g1_acc_time);

            g1_b
        } else {
            E::G1::zero()
        };

        // Compute B in G2
        let b_g2_acc_time = start_timer!(|| "Compute B in G2");
        let s_g2 = pk.vk.delta_g2.mul(s);
        let g2_b = Self::calculate_coeff(s_g2, &pk.b_g2_query, pk.vk.beta_g2, &assignment);
        let r_g1_b = g1_b * &r;
        drop(assignment);

        end_timer!(b_g2_acc_time);

        let c_time = start_timer!(|| "Finish C");
        let mut g_c = s_g_a;
        g_c += &r_g1_b;
        g_c -= &r_s_delta_g1;
        g_c += &l_aux_acc;
        g_c += &h_acc;
        end_timer!(c_time);

        Ok(Proof {
            a: g_a.into_affine(),
            b: g2_b.into_affine(),
            c: g_c.into_affine(),
        })
    }

    /// Create a Groth16 proof that is zero-knowledge using the provided
    /// R1CS-to-QAP reduction.
    /// This method samples randomness for zero knowledges via `rng`.
    #[inline]
    pub fn create_random_proof_with_reduction<C>(
        circuit: C,
        pk: &ProvingKey<E>,
        rng: &mut impl Rng,
    ) -> R1CSResult<Proof<E>>
    where
        C: ConstraintSynthesizer<E::ScalarField>,
    {
        let r = E::ScalarField::rand(rng);
        let s = E::ScalarField::rand(rng);

        Self::create_proof_with_reduction(circuit, pk, r, s)
    }

    /// Create a Groth16 proof that is *not* zero-knowledge with the provided
    /// R1CS-to-QAP reduction.
    #[inline]
    pub fn create_proof_with_reduction_no_zk<C>(
        circuit: C,
        pk: &ProvingKey<E>,
    ) -> R1CSResult<Proof<E>>
    where
        C: ConstraintSynthesizer<E::ScalarField>,
    {
        Self::create_proof_with_reduction(
            circuit,
            pk,
            E::ScalarField::zero(),
            E::ScalarField::zero(),
        )
    }

    /// Create a Groth16 proof using randomness `r` and `s` and the provided
    /// R1CS-to-QAP reduction.
    #[inline]
    pub fn create_proof_with_reduction<C>(
        circuit: C,
        pk: &ProvingKey<E>,
        r: E::ScalarField,
        s: E::ScalarField,
    ) -> R1CSResult<Proof<E>>
    where
        E: Pairing,
        C: ConstraintSynthesizer<E::ScalarField>,
        QAP: R1CSToQAP,
    {
        let prover_time = start_timer!(|| "Groth16::Prover");
        let cs = ConstraintSystem::new_ref();

        // Set the optimization goal
        cs.set_optimization_goal(OptimizationGoal::Constraints);

        // Synthesize the circuit.
        let synthesis_time = start_timer!(|| "Constraint synthesis");
        circuit.generate_constraints(cs.clone())?;
        debug_assert!(cs.is_satisfied().unwrap());
        end_timer!(synthesis_time);

        let lc_time = start_timer!(|| "Inlining LCs");
        cs.finalize();
        end_timer!(lc_time);

        let witness_map_time = start_timer!(|| "R1CS to QAP witness map");
        let h = QAP::witness_map::<E::ScalarField, D<E::ScalarField>>(cs.clone())?;
        end_timer!(witness_map_time);

        let prover = cs.borrow().unwrap();
        let proof = Self::create_proof_with_assignment(
            pk,
            r,
            s,
            &h,
            &prover.instance_assignment[1..],
            &prover.witness_assignment,
        )?;

        end_timer!(prover_time);

        Ok(proof)
    }

    /// Given a Groth16 proof, returns a fresh proof of the same statement. For a proof π of a
    /// statement S, the output of the non-deterministic procedure `rerandomize_proof(π)` is
    /// statistically indistinguishable from a fresh honest proof of S. For more info, see theorem 3 of
    /// [\[BKSV20\]](https://eprint.iacr.org/2020/811)
    pub fn rerandomize_proof(
        vk: &VerifyingKey<E>,
        proof: &Proof<E>,
        rng: &mut impl Rng,
    ) -> Proof<E> {
        // These are our rerandomization factors. They must be nonzero and uniformly sampled.
        let (mut r1, mut r2) = (E::ScalarField::zero(), E::ScalarField::zero());
        while r1.is_zero() || r2.is_zero() {
            r1 = E::ScalarField::rand(rng);
            r2 = E::ScalarField::rand(rng);
        }

        // See figure 1 in the paper referenced above:
        //   A' = (1/r₁)A
        //   B' = r₁B + r₁r₂(δG₂)
        //   C' = C + r₂A

        // We can unwrap() this because r₁ is guaranteed to be nonzero
        let new_a = proof.a.mul(r1.inverse().unwrap());
        let new_b = proof.b.mul(r1) + &vk.delta_g2.mul(r1 * &r2);
        let new_c = proof.c + proof.a.mul(r2).into_affine();

        Proof {
            a: new_a.into_affine(),
            b: new_b.into_affine(),
            c: new_c.into_affine(),
        }
    }

    fn calculate_coeff<G: AffineRepr>(
        initial: G::Group,
        query: &[G],
        vk_param: G,
        assignment: &[<G::ScalarField as PrimeField>::BigInt],
    ) -> G::Group
    where
        G::Group: VariableBaseMSM<MulBase = G>,
    {
        let el = query[0];
        let acc = G::Group::msm_bigint(&query[1..], assignment);

        let mut res = initial;
        res.add_assign(&el);
        res += &acc;
        res.add_assign(&vk_param);

        res
    }
}