ark_poly/polynomial/univariate/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
//! Work with sparse and dense polynomials.

use crate::{DenseUVPolynomial, EvaluationDomain, Evaluations, Polynomial};
use ark_ff::{FftField, Field, Zero};
use ark_std::{borrow::Cow, vec::*};
use DenseOrSparsePolynomial::*;

mod dense;
mod sparse;

pub use dense::DensePolynomial;
pub use sparse::SparsePolynomial;

#[cfg(feature = "parallel")]
use rayon::prelude::*;

/// Represents either a sparse polynomial or a dense one.
#[derive(Clone)]
pub enum DenseOrSparsePolynomial<'a, F: Field> {
    /// Represents the case where `self` is a sparse polynomial
    SPolynomial(Cow<'a, SparsePolynomial<F>>),
    /// Represents the case where `self` is a dense polynomial
    DPolynomial(Cow<'a, DensePolynomial<F>>),
}

impl<'a, F: 'a + Field> From<DensePolynomial<F>> for DenseOrSparsePolynomial<'a, F> {
    fn from(other: DensePolynomial<F>) -> Self {
        DPolynomial(Cow::Owned(other))
    }
}

impl<'a, F: 'a + Field> From<&'a DensePolynomial<F>> for DenseOrSparsePolynomial<'a, F> {
    fn from(other: &'a DensePolynomial<F>) -> Self {
        DPolynomial(Cow::Borrowed(other))
    }
}

impl<'a, F: 'a + Field> From<SparsePolynomial<F>> for DenseOrSparsePolynomial<'a, F> {
    fn from(other: SparsePolynomial<F>) -> Self {
        SPolynomial(Cow::Owned(other))
    }
}

impl<'a, F: Field> From<&'a SparsePolynomial<F>> for DenseOrSparsePolynomial<'a, F> {
    fn from(other: &'a SparsePolynomial<F>) -> Self {
        SPolynomial(Cow::Borrowed(other))
    }
}

impl<'a, F: Field> From<DenseOrSparsePolynomial<'a, F>> for DensePolynomial<F> {
    fn from(other: DenseOrSparsePolynomial<'a, F>) -> DensePolynomial<F> {
        match other {
            DPolynomial(p) => p.into_owned(),
            SPolynomial(p) => p.into_owned().into(),
        }
    }
}

impl<'a, F: 'a + Field> TryInto<SparsePolynomial<F>> for DenseOrSparsePolynomial<'a, F> {
    type Error = ();

    fn try_into(self) -> Result<SparsePolynomial<F>, ()> {
        match self {
            SPolynomial(p) => Ok(p.into_owned()),
            _ => Err(()),
        }
    }
}

impl<'a, F: Field> DenseOrSparsePolynomial<'a, F> {
    /// Checks if the given polynomial is zero.
    pub fn is_zero(&self) -> bool {
        match self {
            SPolynomial(s) => s.is_zero(),
            DPolynomial(d) => d.is_zero(),
        }
    }

    /// Return the degree of `self.
    pub fn degree(&self) -> usize {
        match self {
            SPolynomial(s) => s.degree(),
            DPolynomial(d) => d.degree(),
        }
    }

    #[inline]
    fn leading_coefficient(&self) -> Option<&F> {
        match self {
            SPolynomial(p) => p.last().map(|(_, c)| c),
            DPolynomial(p) => p.last(),
        }
    }

    #[inline]
    fn iter_with_index(&self) -> Vec<(usize, F)> {
        match self {
            SPolynomial(p) => p.to_vec(),
            DPolynomial(p) => p.iter().cloned().enumerate().collect(),
        }
    }

    /// Divide self by another (sparse or dense) polynomial, and returns the
    /// quotient and remainder.
    pub fn divide_with_q_and_r(
        &self,
        divisor: &Self,
    ) -> Option<(DensePolynomial<F>, DensePolynomial<F>)> {
        if self.is_zero() {
            Some((DensePolynomial::zero(), DensePolynomial::zero()))
        } else if divisor.is_zero() {
            panic!("Dividing by zero polynomial")
        } else if self.degree() < divisor.degree() {
            Some((DensePolynomial::zero(), self.clone().into()))
        } else {
            // Now we know that self.degree() >= divisor.degree();
            let mut quotient = vec![F::zero(); self.degree() - divisor.degree() + 1];
            let mut remainder: DensePolynomial<F> = self.clone().into();
            // Can unwrap here because we know self is not zero.
            let divisor_leading_inv = divisor.leading_coefficient().unwrap().inverse().unwrap();
            while !remainder.is_zero() && remainder.degree() >= divisor.degree() {
                let cur_q_coeff = *remainder.coeffs.last().unwrap() * divisor_leading_inv;
                let cur_q_degree = remainder.degree() - divisor.degree();
                quotient[cur_q_degree] = cur_q_coeff;

                for (i, div_coeff) in divisor.iter_with_index() {
                    remainder[cur_q_degree + i] -= &(cur_q_coeff * div_coeff);
                }
                while let Some(true) = remainder.coeffs.last().map(|c| c.is_zero()) {
                    remainder.coeffs.pop();
                }
            }
            Some((DensePolynomial::from_coefficients_vec(quotient), remainder))
        }
    }
}
impl<'a, F: 'a + FftField> DenseOrSparsePolynomial<'a, F> {
    /// Construct `Evaluations` by evaluating a polynomial over the domain
    /// `domain`.
    pub fn evaluate_over_domain<D: EvaluationDomain<F>>(
        poly: impl Into<Self>,
        domain: D,
    ) -> Evaluations<F, D> {
        let poly = poly.into();
        poly.eval_over_domain_helper(domain)
    }

    fn eval_over_domain_helper<D: EvaluationDomain<F>>(self, domain: D) -> Evaluations<F, D> {
        let eval_sparse_poly = |s: &SparsePolynomial<F>| {
            let evals = domain.elements().map(|elem| s.evaluate(&elem)).collect();
            Evaluations::from_vec_and_domain(evals, domain)
        };

        match self {
            SPolynomial(Cow::Borrowed(s)) => eval_sparse_poly(s),
            SPolynomial(Cow::Owned(s)) => eval_sparse_poly(&s),
            DPolynomial(Cow::Borrowed(d)) => {
                if d.is_zero() {
                    Evaluations::zero(domain)
                } else {
                    let mut chunks = d.coeffs.chunks(domain.size());
                    let mut first = chunks.next().unwrap().to_vec();
                    let offset = domain.coset_offset();
                    // Reduce the coefficients of the polynomial mod X^domain.size()
                    for (i, chunk) in chunks.enumerate() {
                        if offset.is_one() {
                            cfg_iter_mut!(first).zip(chunk).for_each(|(x, y)| *x += y);
                        } else {
                            let offset_power = offset.pow(&[((i + 1) * domain.size()) as u64]);
                            cfg_iter_mut!(first)
                                .zip(chunk)
                                .for_each(|(x, y)| *x += offset_power * y);
                        }
                    }
                    domain.fft_in_place(&mut first);
                    Evaluations::from_vec_and_domain(first, domain)
                }
            },
            DPolynomial(Cow::Owned(mut d)) => {
                if d.is_zero() {
                    Evaluations::zero(domain)
                } else {
                    let mut chunks = d.coeffs.chunks_mut(domain.size());
                    let first = chunks.next().unwrap();
                    let offset = domain.coset_offset();
                    // Reduce the coefficients of the polynomial mod X^domain.size()
                    for (i, chunk) in chunks.enumerate() {
                        if offset.is_one() {
                            cfg_iter_mut!(first).zip(chunk).for_each(|(x, y)| *x += y);
                        } else {
                            let offset_power = offset.pow(&[((i + 1) * domain.size()) as u64]);
                            cfg_iter_mut!(first)
                                .zip(chunk)
                                .for_each(|(x, y)| *x += offset_power * y);
                        }
                    }
                    domain.fft_in_place(&mut d.coeffs);
                    Evaluations::from_vec_and_domain(d.coeffs, domain)
                }
            },
        }
    }
}