ark_poly/polynomial/multivariate/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
//! Work with sparse multivariate polynomials.
use ark_ff::Field;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::{
cmp::Ordering,
fmt::{Debug, Error, Formatter},
hash::Hash,
ops::Deref,
vec::*,
};
#[cfg(feature = "parallel")]
use rayon::prelude::*;
mod sparse;
pub use sparse::SparsePolynomial;
/// Describes the interface for a term (monomial) of a multivariate polynomial.
pub trait Term:
Clone
+ PartialOrd
+ Ord
+ PartialEq
+ Eq
+ Hash
+ Default
+ Debug
+ Deref<Target = [(usize, usize)]>
+ Send
+ Sync
+ CanonicalSerialize
+ CanonicalDeserialize
{
/// Create a new `Term` from a list of tuples of the form `(variable, power)`
fn new(term: Vec<(usize, usize)>) -> Self;
/// Returns the total degree of `self`. This is the sum of all variable
/// powers in `self`
fn degree(&self) -> usize;
/// Returns a list of variables in `self`
fn vars(&self) -> Vec<usize>;
/// Returns a list of the powers of each variable in `self`
fn powers(&self) -> Vec<usize>;
/// Returns whether `self` is a constant
fn is_constant(&self) -> bool;
/// Evaluates `self` at the point `p`.
fn evaluate<F: Field>(&self, p: &[F]) -> F;
}
/// Stores a term (monomial) in a multivariate polynomial.
/// Each element is of the form `(variable, power)`.
#[derive(Clone, PartialEq, Eq, Hash, Default, CanonicalSerialize, CanonicalDeserialize)]
pub struct SparseTerm(Vec<(usize, usize)>);
impl SparseTerm {
/// Sums the powers of any duplicated variables. Assumes `term` is sorted.
fn combine(term: &[(usize, usize)]) -> Vec<(usize, usize)> {
let mut term_dedup: Vec<(usize, usize)> = Vec::new();
for (var, pow) in term {
if let Some(prev) = term_dedup.last_mut() {
if prev.0 == *var {
prev.1 += pow;
continue;
}
}
term_dedup.push((*var, *pow));
}
term_dedup
}
}
impl Term for SparseTerm {
/// Create a new `Term` from a list of tuples of the form `(variable, power)`
fn new(mut term: Vec<(usize, usize)>) -> Self {
// Remove any terms with power 0
term.retain(|(_, pow)| *pow != 0);
// If there are more than one variables, make sure they are
// in order and combine any duplicates
if term.len() > 1 {
term.sort_by(|(v1, _), (v2, _)| v1.cmp(v2));
term = Self::combine(&term);
}
Self(term)
}
/// Returns the sum of all variable powers in `self`
fn degree(&self) -> usize {
self.iter().fold(0, |sum, acc| sum + acc.1)
}
/// Returns a list of variables in `self`
fn vars(&self) -> Vec<usize> {
self.iter().map(|(v, _)| *v).collect()
}
/// Returns a list of variable powers in `self`
fn powers(&self) -> Vec<usize> {
self.iter().map(|(_, p)| *p).collect()
}
/// Returns whether `self` is a constant
fn is_constant(&self) -> bool {
self.len() == 0 || self.degree() == 0
}
/// Evaluates `self` at the given `point` in the field.
fn evaluate<F: Field>(&self, point: &[F]) -> F {
cfg_into_iter!(self)
.map(|(var, power)| point[*var].pow([*power as u64]))
.product()
}
}
impl Debug for SparseTerm {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
for variable in self.iter() {
if variable.1 == 1 {
write!(f, " * x_{}", variable.0)?;
} else {
write!(f, " * x_{}^{}", variable.0, variable.1)?;
}
}
Ok(())
}
}
impl Deref for SparseTerm {
type Target = [(usize, usize)];
fn deref(&self) -> &[(usize, usize)] {
&self.0
}
}
impl PartialOrd for SparseTerm {
/// Sort by total degree. If total degree is equal then ordering
/// is given by exponent weight in lower-numbered variables
/// ie. `x_1 > x_2`, `x_1^2 > x_1 * x_2`, etc.
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
if self.degree() != other.degree() {
Some(self.degree().cmp(&other.degree()))
} else {
// Iterate through all variables and return the corresponding ordering
// if they differ in variable numbering or power
for (cur, other) in self.iter().zip(other.iter()) {
if other.0 == cur.0 {
if cur.1 != other.1 {
return Some((cur.1).cmp(&other.1));
}
} else {
return Some((other.0).cmp(&cur.0));
}
}
Some(Ordering::Equal)
}
}
}
impl Ord for SparseTerm {
fn cmp(&self, other: &Self) -> Ordering {
self.partial_cmp(other).unwrap()
}
}