ark_poly/polynomial/multivariate/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
//! Work with sparse multivariate polynomials.
use ark_ff::Field;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::{
    cmp::Ordering,
    fmt::{Debug, Error, Formatter},
    hash::Hash,
    ops::Deref,
    vec::*,
};

#[cfg(feature = "parallel")]
use rayon::prelude::*;

mod sparse;
pub use sparse::SparsePolynomial;

/// Describes the interface for a term (monomial) of a multivariate polynomial.
pub trait Term:
    Clone
    + PartialOrd
    + Ord
    + PartialEq
    + Eq
    + Hash
    + Default
    + Debug
    + Deref<Target = [(usize, usize)]>
    + Send
    + Sync
    + CanonicalSerialize
    + CanonicalDeserialize
{
    /// Create a new `Term` from a list of tuples of the form `(variable, power)`
    fn new(term: Vec<(usize, usize)>) -> Self;

    /// Returns the total degree of `self`. This is the sum of all variable
    /// powers in `self`
    fn degree(&self) -> usize;

    /// Returns a list of variables in `self`
    fn vars(&self) -> Vec<usize>;

    /// Returns a list of the powers of each variable in `self`
    fn powers(&self) -> Vec<usize>;

    /// Returns whether `self` is a constant
    fn is_constant(&self) -> bool;

    /// Evaluates `self` at the point `p`.
    fn evaluate<F: Field>(&self, p: &[F]) -> F;
}

/// Stores a term (monomial) in a multivariate polynomial.
/// Each element is of the form `(variable, power)`.
#[derive(Clone, PartialEq, Eq, Hash, Default, CanonicalSerialize, CanonicalDeserialize)]
pub struct SparseTerm(Vec<(usize, usize)>);

impl SparseTerm {
    /// Sums the powers of any duplicated variables. Assumes `term` is sorted.
    fn combine(term: &[(usize, usize)]) -> Vec<(usize, usize)> {
        let mut term_dedup: Vec<(usize, usize)> = Vec::new();
        for (var, pow) in term {
            if let Some(prev) = term_dedup.last_mut() {
                if prev.0 == *var {
                    prev.1 += pow;
                    continue;
                }
            }
            term_dedup.push((*var, *pow));
        }
        term_dedup
    }
}

impl Term for SparseTerm {
    /// Create a new `Term` from a list of tuples of the form `(variable, power)`
    fn new(mut term: Vec<(usize, usize)>) -> Self {
        // Remove any terms with power 0
        term.retain(|(_, pow)| *pow != 0);
        // If there are more than one variables, make sure they are
        // in order and combine any duplicates
        if term.len() > 1 {
            term.sort_by(|(v1, _), (v2, _)| v1.cmp(v2));
            term = Self::combine(&term);
        }
        Self(term)
    }

    /// Returns the sum of all variable powers in `self`
    fn degree(&self) -> usize {
        self.iter().fold(0, |sum, acc| sum + acc.1)
    }

    /// Returns a list of variables in `self`
    fn vars(&self) -> Vec<usize> {
        self.iter().map(|(v, _)| *v).collect()
    }

    /// Returns a list of variable powers in `self`
    fn powers(&self) -> Vec<usize> {
        self.iter().map(|(_, p)| *p).collect()
    }

    /// Returns whether `self` is a constant
    fn is_constant(&self) -> bool {
        self.len() == 0 || self.degree() == 0
    }

    /// Evaluates `self` at the given `point` in the field.
    fn evaluate<F: Field>(&self, point: &[F]) -> F {
        cfg_into_iter!(self)
            .map(|(var, power)| point[*var].pow([*power as u64]))
            .product()
    }
}

impl Debug for SparseTerm {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
        for variable in self.iter() {
            if variable.1 == 1 {
                write!(f, " * x_{}", variable.0)?;
            } else {
                write!(f, " * x_{}^{}", variable.0, variable.1)?;
            }
        }
        Ok(())
    }
}

impl Deref for SparseTerm {
    type Target = [(usize, usize)];

    fn deref(&self) -> &[(usize, usize)] {
        &self.0
    }
}

impl PartialOrd for SparseTerm {
    /// Sort by total degree. If total degree is equal then ordering
    /// is given by exponent weight in lower-numbered variables
    /// ie. `x_1 > x_2`, `x_1^2 > x_1 * x_2`, etc.
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        if self.degree() != other.degree() {
            Some(self.degree().cmp(&other.degree()))
        } else {
            // Iterate through all variables and return the corresponding ordering
            // if they differ in variable numbering or power
            for (cur, other) in self.iter().zip(other.iter()) {
                if other.0 == cur.0 {
                    if cur.1 != other.1 {
                        return Some((cur.1).cmp(&other.1));
                    }
                } else {
                    return Some((other.0).cmp(&cur.0));
                }
            }
            Some(Ordering::Equal)
        }
    }
}

impl Ord for SparseTerm {
    fn cmp(&self, other: &Self) -> Ordering {
        self.partial_cmp(other).unwrap()
    }
}