ark_poly/evaluations/multivariate/multilinear/
sparse.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
//! multilinear polynomial represented in sparse evaluation form.

use crate::{
    evaluations::multivariate::multilinear::swap_bits, DenseMultilinearExtension,
    MultilinearExtension, Polynomial,
};
use ark_ff::{Field, Zero};
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
use ark_std::{
    collections::BTreeMap,
    fmt,
    fmt::{Debug, Formatter},
    ops::{Add, AddAssign, Index, Neg, Sub, SubAssign},
    rand::Rng,
    vec::*,
    UniformRand,
};
use hashbrown::HashMap;
#[cfg(feature = "parallel")]
use rayon::prelude::*;

use super::DefaultHasher;

/// Stores a multilinear polynomial in sparse evaluation form.
#[derive(Clone, PartialEq, Eq, Hash, Default, CanonicalSerialize, CanonicalDeserialize)]
pub struct SparseMultilinearExtension<F: Field> {
    /// tuples of index and value
    pub evaluations: BTreeMap<usize, F>,
    /// number of variables
    pub num_vars: usize,
    zero: F,
}

impl<F: Field> SparseMultilinearExtension<F> {
    pub fn from_evaluations<'a>(
        num_vars: usize,
        evaluations: impl IntoIterator<Item = &'a (usize, F)>,
    ) -> Self {
        let bit_mask = 1 << num_vars;
        // check
        let evaluations = evaluations.into_iter();
        let evaluations: Vec<_> = evaluations
            .map(|(i, v): &(usize, F)| {
                assert!(*i < bit_mask, "index out of range");
                (*i, *v)
            })
            .collect();

        Self {
            evaluations: tuples_to_treemap(&evaluations),
            num_vars,
            zero: F::zero(),
        }
    }

    /// Outputs an `l`-variate multilinear extension where value of evaluations
    /// are sampled uniformly at random. The number of nonzero entries is
    /// `num_nonzero_entries` and indices of those nonzero entries are
    /// distributed uniformly at random.
    ///
    /// Note that this function uses rejection sampling. As number of nonzero
    /// entries approach `2 ^ num_vars`, sampling will be very slow due to
    /// large number of collisions.
    pub fn rand_with_config<R: Rng>(
        num_vars: usize,
        num_nonzero_entries: usize,
        rng: &mut R,
    ) -> Self {
        assert!(num_nonzero_entries <= (1 << num_vars));

        let mut map =
            HashMap::with_hasher(core::hash::BuildHasherDefault::<DefaultHasher>::default());
        for _ in 0..num_nonzero_entries {
            let mut index = usize::rand(rng) & ((1 << num_vars) - 1);
            while map.get(&index).is_some() {
                index = usize::rand(rng) & ((1 << num_vars) - 1);
            }
            map.entry(index).or_insert(F::rand(rng));
        }
        let mut buf = Vec::new();
        for (arg, v) in map.iter() {
            if *v != F::zero() {
                buf.push((*arg, *v));
            }
        }
        let evaluations = hashmap_to_treemap(&map);
        Self {
            num_vars,
            evaluations,
            zero: F::zero(),
        }
    }

    /// Convert the sparse multilinear polynomial to dense form.
    pub fn to_dense_multilinear_extension(&self) -> DenseMultilinearExtension<F> {
        let mut evaluations: Vec<_> = (0..(1 << self.num_vars)).map(|_| F::zero()).collect();
        for (&i, &v) in self.evaluations.iter() {
            evaluations[i] = v;
        }
        DenseMultilinearExtension::from_evaluations_vec(self.num_vars, evaluations)
    }
}

/// utility: precompute f(x) = eq(g,x)
fn precompute_eq<F: Field>(g: &[F]) -> Vec<F> {
    let dim = g.len();
    let mut dp = vec![F::zero(); 1 << dim];
    dp[0] = F::one() - g[0];
    dp[1] = g[0];
    for i in 1..dim {
        for b in 0..(1 << i) {
            let prev = dp[b];
            dp[b + (1 << i)] = prev * g[i];
            dp[b] = prev - dp[b + (1 << i)];
        }
    }
    dp
}

impl<F: Field> MultilinearExtension<F> for SparseMultilinearExtension<F> {
    fn num_vars(&self) -> usize {
        self.num_vars
    }

    /// Outputs an `l`-variate multilinear extension where value of evaluations
    /// are sampled uniformly at random. The number of nonzero entries is
    /// `sqrt(2^num_vars)` and indices of those nonzero entries are distributed
    /// uniformly at random.
    fn rand<R: Rng>(num_vars: usize, rng: &mut R) -> Self {
        Self::rand_with_config(num_vars, 1 << (num_vars / 2), rng)
    }

    fn relabel(&self, mut a: usize, mut b: usize, k: usize) -> Self {
        if a > b {
            // swap
            core::mem::swap(&mut a, &mut b);
        }
        // sanity check
        assert!(
            a + k < self.num_vars && b + k < self.num_vars,
            "invalid relabel argument"
        );
        if a == b || k == 0 {
            return self.clone();
        }
        assert!(a + k <= b, "overlapped swap window is not allowed");
        let ev: Vec<_> = cfg_iter!(self.evaluations)
            .map(|(&i, &v)| (swap_bits(i, a, b, k), v))
            .collect();
        Self {
            num_vars: self.num_vars,
            evaluations: tuples_to_treemap(&ev),
            zero: F::zero(),
        }
    }

    fn fix_variables(&self, partial_point: &[F]) -> Self {
        let dim = partial_point.len();
        assert!(dim <= self.num_vars, "invalid partial point dimension");

        let mut window = ark_std::log2(self.evaluations.len()) as usize;
        if window == 0 {
            window = 1;
        }
        let mut point = partial_point;
        let mut last = treemap_to_hashmap(&self.evaluations);

        // batch evaluation
        while !point.is_empty() {
            let focus_length = if point.len() > window {
                window
            } else {
                point.len()
            };
            let focus = &point[..focus_length];
            point = &point[focus_length..];
            let pre = precompute_eq(focus);
            let dim = focus.len();
            let mut result =
                HashMap::with_hasher(core::hash::BuildHasherDefault::<DefaultHasher>::default());
            for src_entry in last.iter() {
                let old_idx = *src_entry.0;
                let gz = pre[old_idx & ((1 << dim) - 1)];
                let new_idx = old_idx >> dim;
                let dst_entry = result.entry(new_idx).or_insert(F::zero());
                *dst_entry += gz * src_entry.1;
            }
            last = result;
        }
        let evaluations = hashmap_to_treemap(&last);
        Self {
            num_vars: self.num_vars - dim,
            evaluations,
            zero: F::zero(),
        }
    }

    fn to_evaluations(&self) -> Vec<F> {
        let mut evaluations: Vec<_> = (0..1 << self.num_vars).map(|_| F::zero()).collect();
        self.evaluations
            .iter()
            .map(|(&i, &v)| evaluations[i] = v)
            .last();
        evaluations
    }
}

impl<F: Field> Index<usize> for SparseMultilinearExtension<F> {
    type Output = F;

    /// Returns the evaluation of the polynomial at a point represented by
    /// index.
    ///
    /// Index represents a vector in {0,1}^`num_vars` in little endian form. For
    /// example, `0b1011` represents `P(1,1,0,1)`
    ///
    /// For Sparse multilinear polynomial, Lookup_evaluation takes log time to
    /// the size of polynomial.
    fn index(&self, index: usize) -> &Self::Output {
        if let Some(v) = self.evaluations.get(&index) {
            v
        } else {
            &self.zero
        }
    }
}

impl<F: Field> Polynomial<F> for SparseMultilinearExtension<F> {
    type Point = Vec<F>;

    fn degree(&self) -> usize {
        self.num_vars
    }

    fn evaluate(&self, point: &Self::Point) -> F {
        assert!(point.len() == self.num_vars);
        self.fix_variables(point)[0]
    }
}

impl<F: Field> Add for SparseMultilinearExtension<F> {
    type Output = SparseMultilinearExtension<F>;

    fn add(self, other: SparseMultilinearExtension<F>) -> Self {
        &self + &other
    }
}

impl<'a, 'b, F: Field> Add<&'a SparseMultilinearExtension<F>>
    for &'b SparseMultilinearExtension<F>
{
    type Output = SparseMultilinearExtension<F>;

    fn add(self, rhs: &'a SparseMultilinearExtension<F>) -> Self::Output {
        // handle zero case
        if self.is_zero() {
            return rhs.clone();
        }
        if rhs.is_zero() {
            return self.clone();
        }

        assert_eq!(
            rhs.num_vars, self.num_vars,
            "trying to add non-zero polynomial with different number of variables"
        );
        // simply merge the evaluations
        let mut evaluations =
            HashMap::with_hasher(core::hash::BuildHasherDefault::<DefaultHasher>::default());
        for (&i, &v) in self.evaluations.iter().chain(rhs.evaluations.iter()) {
            *(evaluations.entry(i).or_insert(F::zero())) += v;
        }
        let evaluations: Vec<_> = evaluations
            .into_iter()
            .filter(|(_, v)| !v.is_zero())
            .collect();

        Self::Output {
            evaluations: tuples_to_treemap(&evaluations),
            num_vars: self.num_vars,
            zero: F::zero(),
        }
    }
}

impl<F: Field> AddAssign for SparseMultilinearExtension<F> {
    fn add_assign(&mut self, other: Self) {
        *self = &*self + &other;
    }
}

impl<'a, F: Field> AddAssign<&'a SparseMultilinearExtension<F>> for SparseMultilinearExtension<F> {
    fn add_assign(&mut self, other: &'a SparseMultilinearExtension<F>) {
        *self = &*self + other;
    }
}

impl<'a, F: Field> AddAssign<(F, &'a SparseMultilinearExtension<F>)>
    for SparseMultilinearExtension<F>
{
    fn add_assign(&mut self, (f, other): (F, &'a SparseMultilinearExtension<F>)) {
        if !self.is_zero() && !other.is_zero() {
            assert_eq!(
                other.num_vars, self.num_vars,
                "trying to add non-zero polynomial with different number of variables"
            );
        }
        let ev: Vec<_> = cfg_iter!(other.evaluations)
            .map(|(i, v)| (*i, f * v))
            .collect();
        let other = Self {
            num_vars: other.num_vars,
            evaluations: tuples_to_treemap(&ev),
            zero: F::zero(),
        };
        *self += &other;
    }
}

impl<F: Field> Neg for SparseMultilinearExtension<F> {
    type Output = SparseMultilinearExtension<F>;

    fn neg(self) -> Self::Output {
        let ev: Vec<_> = cfg_iter!(self.evaluations)
            .map(|(i, v)| (*i, -*v))
            .collect();
        Self::Output {
            num_vars: self.num_vars,
            evaluations: tuples_to_treemap(&ev),
            zero: F::zero(),
        }
    }
}

impl<F: Field> Sub for SparseMultilinearExtension<F> {
    type Output = SparseMultilinearExtension<F>;

    fn sub(self, other: SparseMultilinearExtension<F>) -> Self {
        &self - &other
    }
}

impl<'a, 'b, F: Field> Sub<&'a SparseMultilinearExtension<F>>
    for &'b SparseMultilinearExtension<F>
{
    type Output = SparseMultilinearExtension<F>;

    fn sub(self, rhs: &'a SparseMultilinearExtension<F>) -> Self::Output {
        self + &rhs.clone().neg()
    }
}

impl<F: Field> SubAssign for SparseMultilinearExtension<F> {
    fn sub_assign(&mut self, other: Self) {
        *self = &*self - &other;
    }
}

impl<'a, F: Field> SubAssign<&'a SparseMultilinearExtension<F>> for SparseMultilinearExtension<F> {
    fn sub_assign(&mut self, other: &'a SparseMultilinearExtension<F>) {
        *self = &*self - other;
    }
}

impl<F: Field> Zero for SparseMultilinearExtension<F> {
    fn zero() -> Self {
        Self {
            num_vars: 0,
            evaluations: tuples_to_treemap(&Vec::new()),
            zero: F::zero(),
        }
    }

    fn is_zero(&self) -> bool {
        self.num_vars == 0 && self.evaluations.is_empty()
    }
}

impl<F: Field> Debug for SparseMultilinearExtension<F> {
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        write!(
            f,
            "SparseMultilinearPolynomial(num_vars = {}, evaluations = [",
            self.num_vars
        )?;
        let mut ev_iter = self.evaluations.iter();
        for _ in 0..ark_std::cmp::min(8, self.evaluations.len()) {
            write!(f, "{:?}", ev_iter.next())?;
        }
        if self.evaluations.len() > 8 {
            write!(f, "...")?;
        }
        write!(f, "])")?;
        Ok(())
    }
}

/// Utility: Convert tuples to hashmap.
fn tuples_to_treemap<F: Field>(tuples: &[(usize, F)]) -> BTreeMap<usize, F> {
    BTreeMap::from_iter(tuples.iter().map(|(i, v)| (*i, *v)))
}

fn treemap_to_hashmap<F: Field>(
    map: &BTreeMap<usize, F>,
) -> HashMap<usize, F, core::hash::BuildHasherDefault<DefaultHasher>> {
    HashMap::from_iter(map.iter().map(|(i, v)| (*i, *v)))
}

fn hashmap_to_treemap<F: Field, S>(map: &HashMap<usize, F, S>) -> BTreeMap<usize, F> {
    BTreeMap::from_iter(map.iter().map(|(i, v)| (*i, *v)))
}

#[cfg(test)]
mod tests {
    use crate::{
        evaluations::multivariate::multilinear::MultilinearExtension, Polynomial,
        SparseMultilinearExtension,
    };
    use ark_ff::{One, Zero};
    use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
    use ark_std::{ops::Neg, test_rng, vec::*, UniformRand};
    use ark_test_curves::bls12_381::Fr;
    /// Some sanity test to ensure random sparse polynomial make sense.
    #[test]
    fn random_poly() {
        const NV: usize = 16;

        let mut rng = test_rng();
        // two random poly should be different
        let poly1 = SparseMultilinearExtension::<Fr>::rand(NV, &mut rng);
        let poly2 = SparseMultilinearExtension::<Fr>::rand(NV, &mut rng);
        assert_ne!(poly1, poly2);
        // test sparsity
        assert!(
            ((1 << (NV / 2)) >> 1) <= poly1.evaluations.len()
                && poly1.evaluations.len() <= ((1 << (NV / 2)) << 1),
            "polynomial size out of range: expected: [{},{}] ,actual: {}",
            ((1 << (NV / 2)) >> 1),
            ((1 << (NV / 2)) << 1),
            poly1.evaluations.len()
        );
    }

    #[test]
    /// Test if sparse multilinear polynomial evaluates correctly.
    /// This function assumes dense multilinear polynomial functions correctly.
    fn evaluate() {
        const NV: usize = 12;
        let mut rng = test_rng();
        for _ in 0..20 {
            let sparse = SparseMultilinearExtension::<Fr>::rand(NV, &mut rng);
            let dense = sparse.to_dense_multilinear_extension();
            let point: Vec<_> = (0..NV).map(|_| Fr::rand(&mut rng)).collect();
            assert_eq!(sparse.evaluate(&point), dense.evaluate(&point));
            let sparse_partial = sparse.fix_variables(&point[..3].to_vec());
            let dense_partial = dense.fix_variables(&point[..3].to_vec());
            let point2: Vec<_> = (0..(NV - 3)).map(|_| Fr::rand(&mut rng)).collect();
            assert_eq!(
                sparse_partial.evaluate(&point2),
                dense_partial.evaluate(&point2)
            );
        }
    }

    #[test]
    fn evaluate_edge_cases() {
        // test constant polynomial
        let mut rng = test_rng();
        let ev1 = Fr::rand(&mut rng);
        let poly1 = SparseMultilinearExtension::from_evaluations(0, &vec![(0, ev1)]);
        assert_eq!(poly1.evaluate(&[].into()), ev1);

        // test single-variate polynomial
        let ev2 = vec![Fr::rand(&mut rng), Fr::rand(&mut rng)];
        let poly2 =
            SparseMultilinearExtension::from_evaluations(1, &vec![(0, ev2[0]), (1, ev2[1])]);

        let x = Fr::rand(&mut rng);
        assert_eq!(
            poly2.evaluate(&[x].into()),
            x * ev2[1] + (Fr::one() - x) * ev2[0]
        );

        // test single-variate polynomial with one entry missing
        let ev3 = Fr::rand(&mut rng);
        let poly2 = SparseMultilinearExtension::from_evaluations(1, &vec![(1, ev3)]);

        let x = Fr::rand(&mut rng);
        assert_eq!(poly2.evaluate(&[x].into()), x * ev3);
    }

    #[test]
    fn index() {
        let mut rng = test_rng();
        let points = vec![
            (11, Fr::rand(&mut rng)),
            (117, Fr::rand(&mut rng)),
            (213, Fr::rand(&mut rng)),
            (255, Fr::rand(&mut rng)),
        ];
        let poly = SparseMultilinearExtension::from_evaluations(8, &points);
        points
            .into_iter()
            .map(|(i, v)| assert_eq!(poly[i], v))
            .last();
        assert_eq!(poly[0], Fr::zero());
        assert_eq!(poly[1], Fr::zero());
    }

    #[test]
    fn arithmetic() {
        const NV: usize = 18;
        let mut rng = test_rng();
        for _ in 0..20 {
            let point: Vec<_> = (0..NV).map(|_| Fr::rand(&mut rng)).collect();
            let poly1 = SparseMultilinearExtension::rand(NV, &mut rng);
            let poly2 = SparseMultilinearExtension::rand(NV, &mut rng);
            let v1 = poly1.evaluate(&point);
            let v2 = poly2.evaluate(&point);
            // test add
            assert_eq!((&poly1 + &poly2).evaluate(&point), v1 + v2);
            // test sub
            assert_eq!((&poly1 - &poly2).evaluate(&point), v1 - v2);
            // test negate
            assert_eq!(poly1.clone().neg().evaluate(&point), -v1);
            // test add assign
            {
                let mut poly1 = poly1.clone();
                poly1 += &poly2;
                assert_eq!(poly1.evaluate(&point), v1 + v2)
            }
            // test sub assign
            {
                let mut poly1 = poly1.clone();
                poly1 -= &poly2;
                assert_eq!(poly1.evaluate(&point), v1 - v2)
            }
            // test add assign with scalar
            {
                let mut poly1 = poly1.clone();
                let scalar = Fr::rand(&mut rng);
                poly1 += (scalar, &poly2);
                assert_eq!(poly1.evaluate(&point), v1 + scalar * v2)
            }
            // test additive identity
            {
                assert_eq!(&poly1 + &SparseMultilinearExtension::zero(), poly1);
                assert_eq!(&SparseMultilinearExtension::zero() + &poly1, poly1);
                {
                    let mut poly1_cloned = poly1.clone();
                    poly1_cloned += &SparseMultilinearExtension::zero();
                    assert_eq!(&poly1_cloned, &poly1);
                    let mut zero = SparseMultilinearExtension::zero();
                    let scalar = Fr::rand(&mut rng);
                    zero += (scalar, &poly1);
                    assert_eq!(zero.evaluate(&point), scalar * v1);
                }
            }
        }
    }

    #[test]
    fn relabel() {
        let mut rng = test_rng();
        for _ in 0..20 {
            let mut poly = SparseMultilinearExtension::rand(10, &mut rng);
            let mut point: Vec<_> = (0..10).map(|_| Fr::rand(&mut rng)).collect();

            let expected = poly.evaluate(&point);

            poly = poly.relabel(2, 2, 1); // should have no effect
            assert_eq!(expected, poly.evaluate(&point));

            poly = poly.relabel(3, 4, 1); // should switch 3 and 4
            point.swap(3, 4);
            assert_eq!(expected, poly.evaluate(&point));

            poly = poly.relabel(7, 5, 1);
            point.swap(7, 5);
            assert_eq!(expected, poly.evaluate(&point));

            poly = poly.relabel(2, 5, 3);
            point.swap(2, 5);
            point.swap(3, 6);
            point.swap(4, 7);
            assert_eq!(expected, poly.evaluate(&point));

            poly = poly.relabel(7, 0, 2);
            point.swap(0, 7);
            point.swap(1, 8);
            assert_eq!(expected, poly.evaluate(&point));
        }
    }

    #[test]
    fn serialize() {
        let mut rng = test_rng();
        for _ in 0..20 {
            let mut buf = Vec::new();
            let poly = SparseMultilinearExtension::<Fr>::rand(10, &mut rng);
            let point: Vec<_> = (0..10).map(|_| Fr::rand(&mut rng)).collect();
            let expected = poly.evaluate(&point);

            poly.serialize_compressed(&mut buf).unwrap();

            let poly2: SparseMultilinearExtension<Fr> =
                SparseMultilinearExtension::deserialize_compressed(&buf[..]).unwrap();
            assert_eq!(poly2.evaluate(&point), expected);
        }
    }
}