ark_r1cs_std/
alloc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
use crate::Vec;
use ark_ff::Field;
use ark_relations::r1cs::{Namespace, SynthesisError};
use core::borrow::Borrow;

/// Describes the mode that a variable should be allocated in within
/// a `ConstraintSystem`.
#[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Copy, Clone)]
pub enum AllocationMode {
    /// Indicate to the `ConstraintSystem` that the high-level variable should
    /// be allocated as a constant. That is, no `Variable`s should be
    /// generated.
    Constant = 0,

    /// Indicate to the `ConstraintSystem` that the high-level variable should
    /// be allocated as a public input to the `ConstraintSystem`.
    Input = 1,

    /// Indicate to the `ConstraintSystem` that the high-level variable should
    /// be allocated as a private witness to the `ConstraintSystem`.
    Witness = 2,
}

impl AllocationMode {
    /// Outputs the maximum according to the relation `Constant < Input <
    /// Witness`.
    pub fn max(&self, other: Self) -> Self {
        use AllocationMode::*;
        match (self, other) {
            (Constant, _) => other,
            (Input, Constant) => *self,
            (Input, _) => other,
            (Witness, _) => *self,
        }
    }
}

/// Specifies how variables of type `Self` should be allocated in a
/// `ConstraintSystem`.
pub trait AllocVar<V: ?Sized, F: Field>: Sized {
    /// Allocates a new variable of type `Self` in the `ConstraintSystem` `cs`.
    /// The mode of allocation is decided by `mode`.
    fn new_variable<T: Borrow<V>>(
        cs: impl Into<Namespace<F>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
        mode: AllocationMode,
    ) -> Result<Self, SynthesisError>;

    /// Allocates a new constant of type `Self` in the `ConstraintSystem` `cs`.
    ///
    /// This should *not* allocate any new variables or constraints in `cs`.
    #[tracing::instrument(target = "r1cs", skip(cs, t))]
    fn new_constant(
        cs: impl Into<Namespace<F>>,
        t: impl Borrow<V>,
    ) -> Result<Self, SynthesisError> {
        Self::new_variable(cs, || Ok(t), AllocationMode::Constant)
    }

    /// Allocates a new public input of type `Self` in the `ConstraintSystem`
    /// `cs`.
    #[tracing::instrument(target = "r1cs", skip(cs, f))]
    fn new_input<T: Borrow<V>>(
        cs: impl Into<Namespace<F>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
    ) -> Result<Self, SynthesisError> {
        Self::new_variable(cs, f, AllocationMode::Input)
    }

    /// Allocates a new private witness of type `Self` in the `ConstraintSystem`
    /// `cs`.
    #[tracing::instrument(target = "r1cs", skip(cs, f))]
    fn new_witness<T: Borrow<V>>(
        cs: impl Into<Namespace<F>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
    ) -> Result<Self, SynthesisError> {
        Self::new_variable(cs, f, AllocationMode::Witness)
    }

    /// Allocates a new constant or private witness of type `Self` in the
    /// `ConstraintSystem` `cs` with the allocation mode inferred from `cs`.
    /// A constant is allocated if `cs` is `None`, and a private witness is
    /// allocated otherwise.
    ///
    /// A common use case is the creation of non-deterministic advice (a.k.a.
    /// hints) in the circuit, where this method can avoid boilerplate code
    /// while allowing optimization on circuit size.
    ///
    /// For example, to compute `x_var / y_var` where `y_var` is a non-zero
    /// variable, one can write:
    /// ```
    /// use ark_ff::PrimeField;
    /// use ark_r1cs_std::{alloc::AllocVar, fields::{fp::FpVar, FieldVar}, R1CSVar};
    /// use ark_relations::r1cs::SynthesisError;
    ///
    /// fn div<F: PrimeField>(x_var: &FpVar<F>, y_var: &FpVar<F>) -> Result<FpVar<F>, SynthesisError> {
    ///   let cs = x_var.cs().or(y_var.cs());
    ///   let z_var = FpVar::new_variable_with_inferred_mode(cs, || Ok(x_var.value()? / y_var.value()?))?;
    ///   z_var.mul_equals(y_var, x_var)?;
    ///   Ok(z_var)
    /// }
    /// ```
    /// In this example, if either `x_var` or `y_var` is a witness variable,
    /// then `z_var` is also a witness variable. On the other hand, `z_var`
    /// is a constant if both `x_var` and `y_var` are constants (i.e., `cs`
    /// is `None`), and future operations on `z_var` do not generate any
    /// constraints.
    ///
    /// (Note that we use division as an example for simplicity. You may
    /// call `x_var.mul_by_inverse(y_var)?` directly, which internally works
    /// similarly to the above code.)
    #[tracing::instrument(target = "r1cs", skip(cs, f))]
    fn new_variable_with_inferred_mode<T: Borrow<V>>(
        cs: impl Into<Namespace<F>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
    ) -> Result<Self, SynthesisError> {
        let ns: Namespace<F> = cs.into();
        let cs = ns.cs();
        let mode = if cs.is_none() {
            AllocationMode::Constant
        } else {
            AllocationMode::Witness
        };
        Self::new_variable(cs, f, mode)
    }
}

/// This blanket implementation just allocates variables in `Self`
/// element by element.
impl<I, F: Field, A: AllocVar<I, F>> AllocVar<[I], F> for Vec<A> {
    fn new_variable<T: Borrow<[I]>>(
        cs: impl Into<Namespace<F>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
        mode: AllocationMode,
    ) -> Result<Self, SynthesisError> {
        let ns = cs.into();
        let cs = ns.cs();
        f().and_then(|v| {
            v.borrow()
                .iter()
                .map(|e| A::new_variable(cs.clone(), || Ok(e), mode))
                .collect()
        })
    }
}

/// Dummy impl for `()`.
impl<F: Field> AllocVar<(), F> for () {
    fn new_variable<T: Borrow<()>>(
        _cs: impl Into<Namespace<F>>,
        _f: impl FnOnce() -> Result<T, SynthesisError>,
        _mode: AllocationMode,
    ) -> Result<Self, SynthesisError> {
        Ok(())
    }
}

/// This blanket implementation just allocates variables in `Self`
/// element by element.
impl<I, F: Field, A: AllocVar<I, F>, const N: usize> AllocVar<[I; N], F> for [A; N] {
    fn new_variable<T: Borrow<[I; N]>>(
        cs: impl Into<Namespace<F>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
        mode: AllocationMode,
    ) -> Result<Self, SynthesisError> {
        let ns = cs.into();
        let cs = ns.cs();
        f().map(|v| {
            let v = v.borrow();
            core::array::from_fn(|i| A::new_variable(cs.clone(), || Ok(&v[i]), mode).unwrap())
        })
    }
}

/// This blanket implementation just allocates variables in `Self`
/// element by element.
impl<I, F: Field, A: AllocVar<I, F>, const N: usize> AllocVar<[I], F> for [A; N] {
    fn new_variable<T: Borrow<[I]>>(
        cs: impl Into<Namespace<F>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
        mode: AllocationMode,
    ) -> Result<Self, SynthesisError> {
        let ns = cs.into();
        let cs = ns.cs();
        f().map(|v| {
            let v = v.borrow();
            core::array::from_fn(|i| A::new_variable(cs.clone(), || Ok(&v[i]), mode).unwrap())
        })
    }
}