ark_r1cs_std/boolean/
allocated.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
use core::borrow::Borrow;

use ark_ff::{Field, PrimeField};
use ark_relations::r1cs::{ConstraintSystemRef, Namespace, SynthesisError, Variable};

use crate::{
    alloc::{AllocVar, AllocationMode},
    select::CondSelectGadget,
    Assignment,
};

use super::Boolean;

/// Represents a variable in the constraint system which is guaranteed
/// to be either zero or one.
///
/// In general, one should prefer using `Boolean` instead of `AllocatedBool`,
/// as `Boolean` offers better support for constant values, and implements
/// more traits.
#[derive(Clone, Debug, Eq, PartialEq)]
#[must_use]
pub struct AllocatedBool<F: Field> {
    pub(super) variable: Variable,
    pub(super) cs: ConstraintSystemRef<F>,
}

pub(crate) fn bool_to_field<F: Field>(val: impl Borrow<bool>) -> F {
    F::from(*val.borrow())
}

impl<F: Field> AllocatedBool<F> {
    /// Get the assigned value for `self`.
    pub fn value(&self) -> Result<bool, SynthesisError> {
        let value = self.cs.assigned_value(self.variable).get()?;
        if value.is_zero() {
            Ok(false)
        } else if value.is_one() {
            Ok(true)
        } else {
            unreachable!("Incorrect value assigned: {:?}", value);
        }
    }

    /// Get the R1CS variable for `self`.
    pub fn variable(&self) -> Variable {
        self.variable
    }

    /// Allocate a witness variable without a booleanity check.
    #[doc(hidden)]
    pub fn new_witness_without_booleanity_check<T: Borrow<bool>>(
        cs: ConstraintSystemRef<F>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
    ) -> Result<Self, SynthesisError> {
        let variable = cs.new_witness_variable(|| f().map(bool_to_field))?;
        Ok(Self { variable, cs })
    }

    /// Performs an XOR operation over the two operands, returning
    /// an `AllocatedBool`.
    #[tracing::instrument(target = "r1cs")]
    pub fn not(&self) -> Result<Self, SynthesisError> {
        let variable = self.cs.new_lc(lc!() + Variable::One - self.variable)?;
        Ok(Self {
            variable,
            cs: self.cs.clone(),
        })
    }

    /// Performs an XOR operation over the two operands, returning
    /// an `AllocatedBool`.
    #[tracing::instrument(target = "r1cs")]
    pub fn xor(&self, b: &Self) -> Result<Self, SynthesisError> {
        let result = Self::new_witness_without_booleanity_check(self.cs.clone(), || {
            Ok(self.value()? ^ b.value()?)
        })?;

        // Constrain (a + a) * (b) = (a + b - c)
        // Given that a and b are boolean constrained, if they
        // are equal, the only solution for c is 0, and if they
        // are different, the only solution for c is 1.
        //
        // ¬(a ∧ b) ∧ ¬(¬a ∧ ¬b) = c
        // (1 - (a * b)) * (1 - ((1 - a) * (1 - b))) = c
        // (1 - ab) * (1 - (1 - a - b + ab)) = c
        // (1 - ab) * (a + b - ab) = c
        // a + b - ab - (a^2)b - (b^2)a + (a^2)(b^2) = c
        // a + b - ab - ab - ab + ab = c
        // a + b - 2ab = c
        // -2a * b = c - a - b
        // 2a * b = a + b - c
        // (a + a) * b = a + b - c
        self.cs.enforce_constraint(
            lc!() + self.variable + self.variable,
            lc!() + b.variable,
            lc!() + self.variable + b.variable - result.variable,
        )?;

        Ok(result)
    }

    /// Performs an AND operation over the two operands, returning
    /// an `AllocatedBool`.
    #[tracing::instrument(target = "r1cs")]
    pub fn and(&self, b: &Self) -> Result<Self, SynthesisError> {
        let result = Self::new_witness_without_booleanity_check(self.cs.clone(), || {
            Ok(self.value()? & b.value()?)
        })?;

        // Constrain (a) * (b) = (c), ensuring c is 1 iff
        // a AND b are both 1.
        self.cs.enforce_constraint(
            lc!() + self.variable,
            lc!() + b.variable,
            lc!() + result.variable,
        )?;

        Ok(result)
    }

    /// Performs an OR operation over the two operands, returning
    /// an `AllocatedBool`.
    #[tracing::instrument(target = "r1cs")]
    pub fn or(&self, b: &Self) -> Result<Self, SynthesisError> {
        let result = Self::new_witness_without_booleanity_check(self.cs.clone(), || {
            Ok(self.value()? | b.value()?)
        })?;

        // Constrain (1 - a) * (1 - b) = (1 - c), ensuring c is 0 iff
        // a and b are both false, and otherwise c is 1.
        self.cs.enforce_constraint(
            lc!() + Variable::One - self.variable,
            lc!() + Variable::One - b.variable,
            lc!() + Variable::One - result.variable,
        )?;

        Ok(result)
    }

    /// Calculates `a AND (NOT b)`.
    #[tracing::instrument(target = "r1cs")]
    pub fn and_not(&self, b: &Self) -> Result<Self, SynthesisError> {
        let result = Self::new_witness_without_booleanity_check(self.cs.clone(), || {
            Ok(self.value()? & !b.value()?)
        })?;

        // Constrain (a) * (1 - b) = (c), ensuring c is 1 iff
        // a is true and b is false, and otherwise c is 0.
        self.cs.enforce_constraint(
            lc!() + self.variable,
            lc!() + Variable::One - b.variable,
            lc!() + result.variable,
        )?;

        Ok(result)
    }

    /// Calculates `(NOT a) AND (NOT b)`.
    #[tracing::instrument(target = "r1cs")]
    pub fn nor(&self, b: &Self) -> Result<Self, SynthesisError> {
        let result = Self::new_witness_without_booleanity_check(self.cs.clone(), || {
            Ok(!(self.value()? | b.value()?))
        })?;

        // Constrain (1 - a) * (1 - b) = (c), ensuring c is 1 iff
        // a and b are both false, and otherwise c is 0.
        self.cs.enforce_constraint(
            lc!() + Variable::One - self.variable,
            lc!() + Variable::One - b.variable,
            lc!() + result.variable,
        )?;

        Ok(result)
    }
}

impl<F: Field> AllocVar<bool, F> for AllocatedBool<F> {
    /// Produces a new variable of the appropriate kind
    /// (instance or witness), with a booleanity check.
    ///
    /// N.B.: we could omit the booleanity check when allocating `self`
    /// as a new public input, but that places an additional burden on
    /// protocol designers. Better safe than sorry!
    fn new_variable<T: Borrow<bool>>(
        cs: impl Into<Namespace<F>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
        mode: AllocationMode,
    ) -> Result<Self, SynthesisError> {
        let ns = cs.into();
        let cs = ns.cs();
        if mode == AllocationMode::Constant {
            let variable = if *f()?.borrow() {
                Variable::One
            } else {
                Variable::Zero
            };
            Ok(Self { variable, cs })
        } else {
            let variable = if mode == AllocationMode::Input {
                cs.new_input_variable(|| f().map(bool_to_field))?
            } else {
                cs.new_witness_variable(|| f().map(bool_to_field))?
            };

            // Constrain: (1 - a) * a = 0
            // This constrains a to be either 0 or 1.

            cs.enforce_constraint(lc!() + Variable::One - variable, lc!() + variable, lc!())?;

            Ok(Self { variable, cs })
        }
    }
}

impl<F: PrimeField> CondSelectGadget<F> for AllocatedBool<F> {
    #[tracing::instrument(target = "r1cs")]
    fn conditionally_select(
        cond: &Boolean<F>,
        true_val: &Self,
        false_val: &Self,
    ) -> Result<Self, SynthesisError> {
        let res = Boolean::conditionally_select(
            cond,
            &true_val.clone().into(),
            &false_val.clone().into(),
        )?;
        match res {
            Boolean::Var(a) => Ok(a),
            _ => unreachable!("Impossible"),
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    use ark_relations::r1cs::ConstraintSystem;
    use ark_test_curves::bls12_381::Fr;
    #[test]
    fn allocated_xor() -> Result<(), SynthesisError> {
        for a_val in [false, true].iter().copied() {
            for b_val in [false, true].iter().copied() {
                let cs = ConstraintSystem::<Fr>::new_ref();
                let a = AllocatedBool::new_witness(cs.clone(), || Ok(a_val))?;
                let b = AllocatedBool::new_witness(cs.clone(), || Ok(b_val))?;
                let c = AllocatedBool::xor(&a, &b)?;
                assert_eq!(c.value()?, a_val ^ b_val);

                assert!(cs.is_satisfied().unwrap());
                assert_eq!(a.value()?, (a_val));
                assert_eq!(b.value()?, (b_val));
                assert_eq!(c.value()?, (a_val ^ b_val));
            }
        }
        Ok(())
    }

    #[test]
    fn allocated_or() -> Result<(), SynthesisError> {
        for a_val in [false, true].iter().copied() {
            for b_val in [false, true].iter().copied() {
                let cs = ConstraintSystem::<Fr>::new_ref();
                let a = AllocatedBool::new_witness(cs.clone(), || Ok(a_val))?;
                let b = AllocatedBool::new_witness(cs.clone(), || Ok(b_val))?;
                let c = AllocatedBool::or(&a, &b)?;
                assert_eq!(c.value()?, a_val | b_val);

                assert!(cs.is_satisfied().unwrap());
                assert_eq!(a.value()?, (a_val));
                assert_eq!(b.value()?, (b_val));
                assert_eq!(c.value()?, (a_val | b_val));
            }
        }
        Ok(())
    }

    #[test]
    fn allocated_and() -> Result<(), SynthesisError> {
        for a_val in [false, true].iter().copied() {
            for b_val in [false, true].iter().copied() {
                let cs = ConstraintSystem::<Fr>::new_ref();
                let a = AllocatedBool::new_witness(cs.clone(), || Ok(a_val))?;
                let b = AllocatedBool::new_witness(cs.clone(), || Ok(b_val))?;
                let c = AllocatedBool::and(&a, &b)?;
                assert_eq!(c.value()?, a_val & b_val);

                assert!(cs.is_satisfied().unwrap());
                assert_eq!(a.value()?, (a_val));
                assert_eq!(b.value()?, (b_val));
                assert_eq!(c.value()?, (a_val & b_val));
            }
        }
        Ok(())
    }

    #[test]
    fn allocated_and_not() -> Result<(), SynthesisError> {
        for a_val in [false, true].iter().copied() {
            for b_val in [false, true].iter().copied() {
                let cs = ConstraintSystem::<Fr>::new_ref();
                let a = AllocatedBool::new_witness(cs.clone(), || Ok(a_val))?;
                let b = AllocatedBool::new_witness(cs.clone(), || Ok(b_val))?;
                let c = AllocatedBool::and_not(&a, &b)?;
                assert_eq!(c.value()?, a_val & !b_val);

                assert!(cs.is_satisfied().unwrap());
                assert_eq!(a.value()?, (a_val));
                assert_eq!(b.value()?, (b_val));
                assert_eq!(c.value()?, (a_val & !b_val));
            }
        }
        Ok(())
    }

    #[test]
    fn allocated_nor() -> Result<(), SynthesisError> {
        for a_val in [false, true].iter().copied() {
            for b_val in [false, true].iter().copied() {
                let cs = ConstraintSystem::<Fr>::new_ref();
                let a = AllocatedBool::new_witness(cs.clone(), || Ok(a_val))?;
                let b = AllocatedBool::new_witness(cs.clone(), || Ok(b_val))?;
                let c = AllocatedBool::nor(&a, &b)?;
                assert_eq!(c.value()?, !a_val & !b_val);

                assert!(cs.is_satisfied().unwrap());
                assert_eq!(a.value()?, (a_val));
                assert_eq!(b.value()?, (b_val));
                assert_eq!(c.value()?, (!a_val & !b_val));
            }
        }
        Ok(())
    }
}