ark_r1cs_std/groups/curves/short_weierstrass/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
use ark_ec::{
    short_weierstrass::{Affine as SWAffine, Projective as SWProjective, SWCurveConfig},
    AffineRepr, CurveConfig, CurveGroup,
};
use ark_ff::{AdditiveGroup, BitIteratorBE, Field, One, PrimeField, Zero};
use ark_relations::r1cs::{ConstraintSystemRef, Namespace, SynthesisError};
use ark_std::{borrow::Borrow, marker::PhantomData, ops::Mul};
use educe::Educe;
use non_zero_affine::NonZeroAffineVar;

use crate::{
    convert::{ToBitsGadget, ToBytesGadget, ToConstraintFieldGadget},
    fields::{emulated_fp::EmulatedFpVar, fp::FpVar},
    prelude::*,
    Vec,
};

/// This module provides a generic implementation of G1 and G2 for
/// the [\[BLS12]\](<https://eprint.iacr.org/2002/088.pdf>) family of bilinear groups.
pub mod bls12;

/// This module provides a generic implementation of G1 and G2 for
/// the [\[MNT4]\](<https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.8113&rep=rep1&type=pdf>)
///  family of bilinear groups.
pub mod mnt4;
/// This module provides a generic implementation of G1 and G2 for
/// the [\[MNT6]\](<https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.20.8113&rep=rep1&type=pdf>)
///  family of bilinear groups.
pub mod mnt6;

/// This module provides a generic implementation of elliptic curve operations
/// for points on short-weierstrass curves in affine coordinates that **are
/// not** equal to zero.
///
/// Note: this module is **unsafe** in general: it can synthesize unsatisfiable
/// or underconstrained constraint systems when a represented point _is_ equal
/// to zero. The [ProjectiveVar] gadget is the recommended way of working with
/// elliptic curve points.
pub mod non_zero_affine;

type BasePrimeField<P> = <<P as CurveConfig>::BaseField as Field>::BasePrimeField;

/// An implementation of arithmetic for Short Weierstrass curves that relies on
/// the complete formulae derived in the paper of
/// [[Renes, Costello, Batina 2015]](<https://eprint.iacr.org/2015/1060>).
#[derive(Educe)]
#[educe(Debug, Clone)]
#[must_use]
pub struct ProjectiveVar<P: SWCurveConfig, F: FieldVar<P::BaseField, BasePrimeField<P>>>
where
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    /// The x-coordinate.
    pub x: F,
    /// The y-coordinate.
    pub y: F,
    /// The z-coordinate.
    pub z: F,
    #[educe(Debug(ignore))]
    _params: PhantomData<P>,
}

/// An affine representation of a curve point.
#[derive(Educe)]
#[educe(Debug, Clone)]
#[must_use]
pub struct AffineVar<P: SWCurveConfig, F: FieldVar<P::BaseField, BasePrimeField<P>>>
where
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    /// The x-coordinate.
    pub x: F,
    /// The y-coordinate.
    pub y: F,
    /// Is `self` the point at infinity.
    pub infinity: Boolean<BasePrimeField<P>>,
    #[educe(Debug(ignore))]
    _params: PhantomData<P>,
}

impl<P, F> AffineVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, BasePrimeField<P>>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    fn new(x: F, y: F, infinity: Boolean<BasePrimeField<P>>) -> Self {
        Self {
            x,
            y,
            infinity,
            _params: PhantomData,
        }
    }

    /// Returns the value assigned to `self` in the underlying
    /// constraint system.
    pub fn value(&self) -> Result<SWAffine<P>, SynthesisError> {
        Ok(match self.infinity.value()? {
            true => SWAffine::identity(),
            false => SWAffine::new(self.x.value()?, self.y.value()?),
        })
    }
}

impl<P, F> ToConstraintFieldGadget<BasePrimeField<P>> for AffineVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, BasePrimeField<P>>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
    F: ToConstraintFieldGadget<BasePrimeField<P>>,
{
    fn to_constraint_field(&self) -> Result<Vec<FpVar<BasePrimeField<P>>>, SynthesisError> {
        let mut res = Vec::<FpVar<BasePrimeField<P>>>::new();

        res.extend_from_slice(&self.x.to_constraint_field()?);
        res.extend_from_slice(&self.y.to_constraint_field()?);
        res.extend_from_slice(&self.infinity.to_constraint_field()?);

        Ok(res)
    }
}

impl<P, F> R1CSVar<BasePrimeField<P>> for ProjectiveVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, BasePrimeField<P>>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    type Value = SWProjective<P>;

    fn cs(&self) -> ConstraintSystemRef<BasePrimeField<P>> {
        self.x.cs().or(self.y.cs()).or(self.z.cs())
    }

    fn value(&self) -> Result<Self::Value, SynthesisError> {
        let (x, y, z) = (self.x.value()?, self.y.value()?, self.z.value()?);
        let result = if let Some(z_inv) = z.inverse() {
            SWAffine::new(x * &z_inv, y * &z_inv)
        } else {
            SWAffine::identity()
        };
        Ok(result.into())
    }
}

impl<P: SWCurveConfig, F: FieldVar<P::BaseField, BasePrimeField<P>>> ProjectiveVar<P, F>
where
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    /// Constructs `Self` from an `(x, y, z)` coordinate triple.
    pub fn new(x: F, y: F, z: F) -> Self {
        Self {
            x,
            y,
            z,
            _params: PhantomData,
        }
    }

    /// Convert this point into affine form.
    #[tracing::instrument(target = "r1cs")]
    pub fn to_affine(&self) -> Result<AffineVar<P, F>, SynthesisError> {
        if self.is_constant() {
            let point = self.value()?.into_affine();
            let x = F::new_constant(ConstraintSystemRef::None, point.x)?;
            let y = F::new_constant(ConstraintSystemRef::None, point.y)?;
            let infinity = Boolean::constant(point.infinity);
            Ok(AffineVar::new(x, y, infinity))
        } else {
            let cs = self.cs();
            let infinity = self.is_zero()?;
            let zero_affine = SWAffine::<P>::zero();
            let zero_x = F::new_constant(cs.clone(), &zero_affine.x)?;
            let zero_y = F::new_constant(cs.clone(), &zero_affine.y)?;
            // Allocate a variable whose value is either `self.z.inverse()` if the inverse
            // exists, and is zero otherwise.
            let z_inv = F::new_witness(ark_relations::ns!(cs, "z_inverse"), || {
                Ok(self.z.value()?.inverse().unwrap_or_else(P::BaseField::zero))
            })?;
            // The inverse exists if `!self.is_zero()`.
            // This means that `z_inv * self.z = 1` if `self.is_not_zero()`, and
            //                 `z_inv * self.z = 0` if `self.is_zero()`.
            //
            // Thus, `z_inv * self.z = !self.is_zero()`.
            z_inv.mul_equals(&self.z, &F::from(!&infinity))?;

            let non_zero_x = &self.x * &z_inv;
            let non_zero_y = &self.y * &z_inv;

            let x = infinity.select(&zero_x, &non_zero_x)?;
            let y = infinity.select(&zero_y, &non_zero_y)?;

            Ok(AffineVar::new(x, y, infinity))
        }
    }

    /// Allocates a new variable without performing an on-curve check, which is
    /// useful if the variable is known to be on the curve (eg., if the point
    /// is a constant or is a public input).
    #[tracing::instrument(target = "r1cs", skip(cs, f))]
    pub fn new_variable_omit_on_curve_check(
        cs: impl Into<Namespace<BasePrimeField<P>>>,
        f: impl FnOnce() -> Result<SWProjective<P>, SynthesisError>,
        mode: AllocationMode,
    ) -> Result<Self, SynthesisError> {
        let ns = cs.into();
        let cs = ns.cs();

        let (x, y, z) = match f() {
            Ok(ge) => {
                let ge = ge.into_affine();
                if ge.is_zero() {
                    // These values are convenient since the point satisfies
                    // curve equation.
                    (
                        Ok(P::BaseField::zero()),
                        Ok(P::BaseField::one()),
                        Ok(P::BaseField::zero()),
                    )
                } else {
                    (Ok(ge.x), Ok(ge.y), Ok(P::BaseField::one()))
                }
            },
            _ => (
                Err(SynthesisError::AssignmentMissing),
                Err(SynthesisError::AssignmentMissing),
                Err(SynthesisError::AssignmentMissing),
            ),
        };

        let x = F::new_variable(ark_relations::ns!(cs, "x"), || x, mode)?;
        let y = F::new_variable(ark_relations::ns!(cs, "y"), || y, mode)?;
        let z = F::new_variable(ark_relations::ns!(cs, "z"), || z, mode)?;

        Ok(Self::new(x, y, z))
    }

    /// Mixed addition, which is useful when `other = (x2, y2)` is known to have
    /// z = 1.
    #[tracing::instrument(target = "r1cs", skip(self, other))]
    pub(crate) fn add_mixed(&self, other: &NonZeroAffineVar<P, F>) -> Result<Self, SynthesisError> {
        // Complete mixed addition formula from Renes-Costello-Batina 2015
        // Algorithm 2
        // (https://eprint.iacr.org/2015/1060).
        // Below, comments at the end of a line denote the corresponding
        // step(s) of the algorithm
        //
        // Adapted from code in
        // https://github.com/RustCrypto/elliptic-curves/blob/master/p256/src/arithmetic/projective.rs
        let three_b = P::COEFF_B.double() + &P::COEFF_B;
        let (x1, y1, z1) = (&self.x, &self.y, &self.z);
        let (x2, y2) = (&other.x, &other.y);

        let xx = x1 * x2; // 1
        let yy = y1 * y2; // 2
        let xy_pairs = ((x1 + y1) * &(x2 + y2)) - (&xx + &yy); // 4, 5, 6, 7, 8
        let xz_pairs = (x2 * z1) + x1; // 8, 9
        let yz_pairs = (y2 * z1) + y1; // 10, 11

        let axz = mul_by_coeff_a::<P, F>(&xz_pairs); // 12

        let bz3_part = &axz + z1 * three_b; // 13, 14

        let yy_m_bz3 = &yy - &bz3_part; // 15
        let yy_p_bz3 = &yy + &bz3_part; // 16

        let azz = mul_by_coeff_a::<P, F>(z1); // 20
        let xx3_p_azz = xx.double().unwrap() + &xx + &azz; // 18, 19, 22

        let bxz3 = &xz_pairs * three_b; // 21
        let b3_xz_pairs = mul_by_coeff_a::<P, F>(&(&xx - &azz)) + &bxz3; // 23, 24, 25

        let x = (&yy_m_bz3 * &xy_pairs) - &yz_pairs * &b3_xz_pairs; // 28,29, 30
        let y = (&yy_p_bz3 * &yy_m_bz3) + &xx3_p_azz * b3_xz_pairs; // 17, 26, 27
        let z = (&yy_p_bz3 * &yz_pairs) + xy_pairs * xx3_p_azz; // 31, 32, 33

        Ok(ProjectiveVar::new(x, y, z))
    }

    /// Computes a scalar multiplication with a little-endian scalar of size
    /// `P::ScalarField::MODULUS_BITS`.
    #[tracing::instrument(
        target = "r1cs",
        skip(self, mul_result, multiple_of_power_of_two, bits)
    )]
    fn fixed_scalar_mul_le(
        &self,
        mul_result: &mut Self,
        multiple_of_power_of_two: &mut NonZeroAffineVar<P, F>,
        bits: &[&Boolean<BasePrimeField<P>>],
    ) -> Result<(), SynthesisError> {
        let scalar_modulus_bits = <P::ScalarField as PrimeField>::MODULUS_BIT_SIZE as usize;

        assert!(scalar_modulus_bits >= bits.len());
        let split_len = ark_std::cmp::min(scalar_modulus_bits - 2, bits.len());
        let (affine_bits, proj_bits) = bits.split_at(split_len);
        // Computes the standard little-endian double-and-add algorithm
        // (Algorithm 3.26, Guide to Elliptic Curve Cryptography)
        //
        // We rely on *incomplete* affine formulae for partially computing this.
        // However, we avoid exceptional edge cases because we partition the scalar
        // into two chunks: one guaranteed to be less than p - 2, and the rest.
        // We only use incomplete formulae for the first chunk, which means we avoid
        // exceptions:
        //
        // `add_unchecked(a, b)` is incomplete when either `b.is_zero()`, or when
        // `b = ±a`. During scalar multiplication, we don't hit either case:
        // * `b = ±a`: `b = accumulator = k * a`, where `2 <= k < p - 1`. This implies
        //   that `k != p ± 1`, and so `b != (p ± 1) * a`. Because the group is finite,
        //   this in turn means that `b != ±a`, as required.
        // * `a` or `b` is zero: for `a`, we handle the zero case after the loop; for
        //   `b`, notice that it is monotonically increasing, and furthermore, equals `k
        //   * a`, where `k != p = 0 mod p`.

        // Unlike normal double-and-add, here we start off with a non-zero
        // `accumulator`, because `NonZeroAffineVar::add_unchecked` doesn't
        // support addition with `zero`. In more detail, we initialize
        // `accumulator` to be the initial value of `multiple_of_power_of_two`.
        // This ensures that all unchecked additions of `accumulator` with later
        // values of `multiple_of_power_of_two` are safe. However, to do this
        // correctly, we need to perform two steps:
        // * We must skip the LSB, and instead proceed assuming that it was 1. Later, we
        //   will conditionally subtract the initial value of `accumulator`: if LSB ==
        //   0: subtract initial_acc_value; else, subtract 0.
        // * Because we are assuming the first bit, we must double
        //   `multiple_of_power_of_two`.

        let mut accumulator = multiple_of_power_of_two.clone();
        let initial_acc_value = accumulator.into_projective();

        // The powers start at 2 (instead of 1) because we're skipping the first bit.
        multiple_of_power_of_two.double_in_place()?;

        // As mentioned, we will skip the LSB, and will later handle it via a
        // conditional subtraction.
        for bit in affine_bits.iter().skip(1) {
            if bit.is_constant() {
                if *bit == &Boolean::TRUE {
                    accumulator = accumulator.add_unchecked(multiple_of_power_of_two)?;
                }
            } else {
                let temp = accumulator.add_unchecked(multiple_of_power_of_two)?;
                accumulator = bit.select(&temp, &accumulator)?;
            }
            multiple_of_power_of_two.double_in_place()?;
        }
        // Perform conditional subtraction:

        // We can convert to projective safely because the result is guaranteed to be
        // non-zero by the condition on `affine_bits.len()`, and by the fact
        // that `accumulator` is non-zero
        let result = accumulator.into_projective();
        // If bits[0] is 0, then we have to subtract `self`; else, we subtract zero.
        let subtrahend = bits[0].select(&Self::zero(), &initial_acc_value)?;
        *mul_result += result - subtrahend;

        // Now, let's finish off the rest of the bits using our complete formulae
        for bit in proj_bits {
            if bit.is_constant() {
                if *bit == &Boolean::TRUE {
                    *mul_result += &multiple_of_power_of_two.into_projective();
                }
            } else {
                let temp = &*mul_result + &multiple_of_power_of_two.into_projective();
                *mul_result = bit.select(&temp, &mul_result)?;
            }
            multiple_of_power_of_two.double_in_place()?;
        }
        Ok(())
    }
}

impl<P, F> CurveVar<SWProjective<P>, BasePrimeField<P>> for ProjectiveVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, BasePrimeField<P>>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    fn constant(g: SWProjective<P>) -> Self {
        let cs = ConstraintSystemRef::None;
        Self::new_variable_omit_on_curve_check(cs, || Ok(g), AllocationMode::Constant).unwrap()
    }

    fn zero() -> Self {
        Self::new(F::zero(), F::one(), F::zero())
    }

    fn is_zero(&self) -> Result<Boolean<BasePrimeField<P>>, SynthesisError> {
        self.z.is_zero()
    }

    #[tracing::instrument(target = "r1cs", skip(cs, f))]
    fn new_variable_omit_prime_order_check(
        cs: impl Into<Namespace<BasePrimeField<P>>>,
        f: impl FnOnce() -> Result<SWProjective<P>, SynthesisError>,
        mode: AllocationMode,
    ) -> Result<Self, SynthesisError> {
        let ns = cs.into();
        let cs = ns.cs();
        // Curve equation in projective form:
        // E: Y² * Z = X³ + aX * Z² + bZ³
        //
        // This can be re-written as
        // E: Y² * Z - bZ³ = X³ + aX * Z²
        // E: Z * (Y² - bZ²) = X * (X² + aZ²)
        // so, compute X², Y², Z²,
        //     compute temp = X * (X² + aZ²)
        //     check Z.mul_equals((Y² - bZ²), temp)
        //
        //     A total of 5 multiplications

        let g = Self::new_variable_omit_on_curve_check(cs, f, mode)?;

        if mode != AllocationMode::Constant {
            // Perform on-curve check.
            let b = P::COEFF_B;
            let a = P::COEFF_A;

            let x2 = g.x.square()?;
            let y2 = g.y.square()?;
            let z2 = g.z.square()?;
            let t = &g.x * (x2 + &z2 * a);

            g.z.mul_equals(&(y2 - z2 * b), &t)?;
        }
        Ok(g)
    }

    /// Enforce that `self` is in the prime-order subgroup.
    ///
    /// Does so by multiplying by the prime order, and checking that the result
    /// is unchanged.
    // TODO: at the moment this doesn't work, because the addition and doubling
    // formulae are incomplete for even-order points.
    #[tracing::instrument(target = "r1cs")]
    fn enforce_prime_order(&self) -> Result<(), SynthesisError> {
        unimplemented!("cannot enforce prime order");
        // let r_minus_1 = (-P::ScalarField::one()).into_bigint();

        // let mut result = Self::zero();
        // for b in BitIteratorBE::without_leading_zeros(r_minus_1) {
        //     result.double_in_place()?;

        //     if b {
        //         result += self;
        //     }
        // }
        // self.negate()?.enforce_equal(&result)?;
        // Ok(())
    }

    #[inline]
    #[tracing::instrument(target = "r1cs")]
    fn double_in_place(&mut self) -> Result<(), SynthesisError> {
        // Complete doubling formula from Renes-Costello-Batina 2015
        // Algorithm 3
        // (https://eprint.iacr.org/2015/1060).
        // Below, comments at the end of a line denote the corresponding
        // step(s) of the algorithm
        //
        // Adapted from code in
        // https://github.com/RustCrypto/elliptic-curves/blob/master/p256/src/arithmetic/projective.rs
        let three_b = P::COEFF_B.double() + &P::COEFF_B;

        let xx = self.x.square()?; // 1
        let yy = self.y.square()?; // 2
        let zz = self.z.square()?; // 3
        let xy2 = (&self.x * &self.y).double()?; // 4, 5
        let xz2 = (&self.x * &self.z).double()?; // 6, 7

        let axz2 = mul_by_coeff_a::<P, F>(&xz2); // 8

        let bzz3_part = &axz2 + &zz * three_b; // 9, 10
        let yy_m_bzz3 = &yy - &bzz3_part; // 11
        let yy_p_bzz3 = &yy + &bzz3_part; // 12
        let y_frag = yy_p_bzz3 * &yy_m_bzz3; // 13
        let x_frag = yy_m_bzz3 * &xy2; // 14

        let bxz3 = xz2 * three_b; // 15
        let azz = mul_by_coeff_a::<P, F>(&zz); // 16
        let b3_xz_pairs = mul_by_coeff_a::<P, F>(&(&xx - &azz)) + &bxz3; // 15, 16, 17, 18, 19
        let xx3_p_azz = (xx.double()? + &xx + &azz) * &b3_xz_pairs; // 23, 24, 25

        let y = y_frag + &xx3_p_azz; // 26, 27
        let yz2 = (&self.y * &self.z).double()?; // 28, 29
        let x = x_frag - &(b3_xz_pairs * &yz2); // 30, 31
        let z = (yz2 * &yy).double()?.double()?; // 32, 33, 34
        self.x = x;
        self.y = y;
        self.z = z;
        Ok(())
    }

    #[tracing::instrument(target = "r1cs")]
    fn negate(&self) -> Result<Self, SynthesisError> {
        Ok(Self::new(self.x.clone(), self.y.negate()?, self.z.clone()))
    }

    /// Computes `bits * self`, where `bits` is a little-endian
    /// `Boolean` representation of a scalar.
    #[tracing::instrument(target = "r1cs", skip(bits))]
    fn scalar_mul_le<'a>(
        &self,
        bits: impl Iterator<Item = &'a Boolean<BasePrimeField<P>>>,
    ) -> Result<Self, SynthesisError> {
        if self.is_constant() {
            if self.value().unwrap().is_zero() {
                return Ok(self.clone());
            }
        }
        let self_affine = self.to_affine()?;
        let (x, y, infinity) = (self_affine.x, self_affine.y, self_affine.infinity);
        // We first handle the non-zero case, and then later will conditionally select
        // zero if `self` was zero. However, we also want to make sure that generated
        // constraints are satisfiable in both cases.
        //
        // In particular, using non-sensible values for `x` and `y` in zero-case may cause
        // `unchecked` operations to generate constraints that can never be satisfied, depending
        // on the curve equation coefficients.
        //
        // The safest approach is to use coordinates of some point from the curve, thus not
        // violating assumptions of `NonZeroAffine`. For instance, generator point.
        let x = infinity.select(&F::constant(P::GENERATOR.x), &x)?;
        let y = infinity.select(&F::constant(P::GENERATOR.y), &y)?;
        let non_zero_self = NonZeroAffineVar::new(x, y);

        let mut bits = bits.collect::<Vec<_>>();
        if bits.len() == 0 {
            return Ok(Self::zero());
        }
        // Remove unnecessary constant zeros in the most-significant positions.
        bits = bits
            .into_iter()
            // We iterate from the MSB down.
            .rev()
            // Skip leading zeros, if they are constants.
            .skip_while(|b| b.is_constant() && (b.value().unwrap() == false))
            .collect();
        // After collecting we are in big-endian form; we have to reverse to get back to
        // little-endian.
        bits.reverse();

        let scalar_modulus_bits = <P::ScalarField as PrimeField>::MODULUS_BIT_SIZE;
        let mut mul_result = Self::zero();
        let mut power_of_two_times_self = non_zero_self;
        // We chunk up `bits` into `p`-sized chunks.
        for bits in bits.chunks(scalar_modulus_bits as usize) {
            self.fixed_scalar_mul_le(&mut mul_result, &mut power_of_two_times_self, bits)?;
        }

        // The foregoing algorithm relies on incomplete addition, and so does not
        // work when the input (`self`) is zero. We hence have to perform
        // a check to ensure that if the input is zero, then so is the output.
        // The cost of this check should be less than the benefit of using
        // mixed addition in almost all cases.
        infinity.select(&Self::zero(), &mul_result)
    }

    #[tracing::instrument(target = "r1cs", skip(scalar_bits_with_bases))]
    fn precomputed_base_scalar_mul_le<'a, I, B>(
        &mut self,
        scalar_bits_with_bases: I,
    ) -> Result<(), SynthesisError>
    where
        I: Iterator<Item = (B, &'a SWProjective<P>)>,
        B: Borrow<Boolean<BasePrimeField<P>>>,
    {
        // We just ignore the provided bases and use the faster scalar multiplication.
        let (bits, bases): (Vec<_>, Vec<_>) = scalar_bits_with_bases
            .map(|(b, c)| (b.borrow().clone(), *c))
            .unzip();
        let base = bases[0];
        *self += Self::constant(base).scalar_mul_le(bits.iter())?;
        Ok(())
    }
}

impl<P, F> ToConstraintFieldGadget<BasePrimeField<P>> for ProjectiveVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, BasePrimeField<P>>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
    F: ToConstraintFieldGadget<BasePrimeField<P>>,
{
    fn to_constraint_field(&self) -> Result<Vec<FpVar<BasePrimeField<P>>>, SynthesisError> {
        self.to_affine()?.to_constraint_field()
    }
}

fn mul_by_coeff_a<P: SWCurveConfig, F: FieldVar<P::BaseField, BasePrimeField<P>>>(f: &F) -> F
where
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    if !P::COEFF_A.is_zero() {
        f * P::COEFF_A
    } else {
        F::zero()
    }
}

impl_bounded_ops!(
    ProjectiveVar<P, F>,
    SWProjective<P>,
    Add,
    add,
    AddAssign,
    add_assign,
    |mut this: &'a ProjectiveVar<P, F>, mut other: &'a ProjectiveVar<P, F>| {
        // Implement complete addition for Short Weierstrass curves, following
        // the complete addition formula from Renes-Costello-Batina 2015
        // (https://eprint.iacr.org/2015/1060).
        //
        // We special case handling of constants to get better constraint weight.
        if this.is_constant() {
            // we'll just act like `other` is constant.
            core::mem::swap(&mut this, &mut other);
        }

        if other.is_constant() {
            // The value should exist because `other` is a constant.
            let other = other.value().unwrap();
            if other.is_zero() {
                // this + 0 = this
                this.clone()
            } else {
                // We'll use mixed addition to add non-zero constants.
                let x = F::constant(other.x);
                let y = F::constant(other.y);
                this.add_mixed(&NonZeroAffineVar::new(x, y)).unwrap()
            }
        } else {
            // Complete addition formula from Renes-Costello-Batina 2015
            // Algorithm 1
            // (https://eprint.iacr.org/2015/1060).
            // Below, comments at the end of a line denote the corresponding
            // step(s) of the algorithm
            //
            // Adapted from code in
            // https://github.com/RustCrypto/elliptic-curves/blob/master/p256/src/arithmetic/projective.rs
            let three_b = P::COEFF_B.double() + &P::COEFF_B;
            let (x1, y1, z1) = (&this.x, &this.y, &this.z);
            let (x2, y2, z2) = (&other.x, &other.y, &other.z);

            let xx = x1 * x2; // 1
            let yy = y1 * y2; // 2
            let zz = z1 * z2; // 3
            let xy_pairs = ((x1 + y1) * &(x2 + y2)) - (&xx + &yy); // 4, 5, 6, 7, 8
            let xz_pairs = ((x1 + z1) * &(x2 + z2)) - (&xx + &zz); // 9, 10, 11, 12, 13
            let yz_pairs = ((y1 + z1) * &(y2 + z2)) - (&yy + &zz); // 14, 15, 16, 17, 18

            let axz = mul_by_coeff_a::<P, F>(&xz_pairs); // 19

            let bzz3_part = &axz + &zz * three_b; // 20, 21

            let yy_m_bzz3 = &yy - &bzz3_part; // 22
            let yy_p_bzz3 = &yy + &bzz3_part; // 23

            let azz = mul_by_coeff_a::<P, F>(&zz);
            let xx3_p_azz = xx.double().unwrap() + &xx + &azz; // 25, 26, 27, 29

            let bxz3 = &xz_pairs * three_b; // 28
            let b3_xz_pairs = mul_by_coeff_a::<P, F>(&(&xx - &azz)) + &bxz3; // 30, 31, 32

            let x = (&yy_m_bzz3 * &xy_pairs) - &yz_pairs * &b3_xz_pairs; // 35, 39, 40
            let y = (&yy_p_bzz3 * &yy_m_bzz3) + &xx3_p_azz * b3_xz_pairs; // 24, 36, 37, 38
            let z = (&yy_p_bzz3 * &yz_pairs) + xy_pairs * xx3_p_azz; // 41, 42, 43

            ProjectiveVar::new(x, y, z)
        }

    },
    |this: &'a ProjectiveVar<P, F>, other: SWProjective<P>| {
        this + ProjectiveVar::constant(other)
    },
    (F: FieldVar<P::BaseField, BasePrimeField<P>>, P: SWCurveConfig),
    for <'b> &'b F: FieldOpsBounds<'b, P::BaseField, F>,
);

impl_bounded_ops!(
    ProjectiveVar<P, F>,
    SWProjective<P>,
    Sub,
    sub,
    SubAssign,
    sub_assign,
    |this: &'a ProjectiveVar<P, F>, other: &'a ProjectiveVar<P, F>| this + other.negate().unwrap(),
    |this: &'a ProjectiveVar<P, F>, other: SWProjective<P>| this - ProjectiveVar::constant(other),
    (F: FieldVar<P::BaseField, BasePrimeField<P>>, P: SWCurveConfig),
    for <'b> &'b F: FieldOpsBounds<'b, P::BaseField, F>
);

impl_bounded_ops_diff!(
    ProjectiveVar<P, F>,
    SWProjective<P>,
    EmulatedFpVar<P::ScalarField, BasePrimeField<P>>,
    P::ScalarField,
    Mul,
    mul,
    MulAssign,
    mul_assign,
    |this: &'a ProjectiveVar<P, F>, other: &'a EmulatedFpVar<P::ScalarField, BasePrimeField<P>>| {
        if this.is_constant() && other.is_constant() {
            assert!(this.is_constant() && other.is_constant());
            ProjectiveVar::constant(this.value().unwrap() * &other.value().unwrap())
        } else {
            let bits = other.to_bits_le().unwrap();
            this.scalar_mul_le(bits.iter()).unwrap()
        }
    },
    |this: &'a ProjectiveVar<P, F>, other: P::ScalarField| this * EmulatedFpVar::constant(other),
    (F: FieldVar<P::BaseField, BasePrimeField<P>>, P: SWCurveConfig),
    for <'b> &'b F: FieldOpsBounds<'b, P::BaseField, F>,
);

impl<'a, P, F> GroupOpsBounds<'a, SWProjective<P>, ProjectiveVar<P, F>> for ProjectiveVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, BasePrimeField<P>>,
    for<'b> &'b F: FieldOpsBounds<'b, P::BaseField, F>,
{
}

impl<'a, P, F> GroupOpsBounds<'a, SWProjective<P>, ProjectiveVar<P, F>> for &'a ProjectiveVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, BasePrimeField<P>>,
    for<'b> &'b F: FieldOpsBounds<'b, P::BaseField, F>,
{
}

impl<P, F> CondSelectGadget<BasePrimeField<P>> for ProjectiveVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, BasePrimeField<P>>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    #[inline]
    #[tracing::instrument(target = "r1cs")]
    fn conditionally_select(
        cond: &Boolean<BasePrimeField<P>>,
        true_value: &Self,
        false_value: &Self,
    ) -> Result<Self, SynthesisError> {
        let x = cond.select(&true_value.x, &false_value.x)?;
        let y = cond.select(&true_value.y, &false_value.y)?;
        let z = cond.select(&true_value.z, &false_value.z)?;

        Ok(Self::new(x, y, z))
    }
}

impl<P, F> EqGadget<BasePrimeField<P>> for ProjectiveVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, BasePrimeField<P>>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    #[tracing::instrument(target = "r1cs")]
    fn is_eq(&self, other: &Self) -> Result<Boolean<BasePrimeField<P>>, SynthesisError> {
        let x_equal = (&self.x * &other.z).is_eq(&(&other.x * &self.z))?;
        let y_equal = (&self.y * &other.z).is_eq(&(&other.y * &self.z))?;
        let coordinates_equal = x_equal & y_equal;
        let both_are_zero = self.is_zero()? & other.is_zero()?;
        Ok(both_are_zero | coordinates_equal)
    }

    #[inline]
    #[tracing::instrument(target = "r1cs")]
    fn conditional_enforce_equal(
        &self,
        other: &Self,
        condition: &Boolean<BasePrimeField<P>>,
    ) -> Result<(), SynthesisError> {
        let x_equal = (&self.x * &other.z).is_eq(&(&other.x * &self.z))?;
        let y_equal = (&self.y * &other.z).is_eq(&(&other.y * &self.z))?;
        let coordinates_equal = x_equal & y_equal;
        let both_are_zero = self.is_zero()? & other.is_zero()?;
        (both_are_zero | coordinates_equal).conditional_enforce_equal(&Boolean::TRUE, condition)
    }

    #[inline]
    #[tracing::instrument(target = "r1cs")]
    fn conditional_enforce_not_equal(
        &self,
        other: &Self,
        condition: &Boolean<BasePrimeField<P>>,
    ) -> Result<(), SynthesisError> {
        let is_equal = self.is_eq(other)?;
        (is_equal & condition).enforce_equal(&Boolean::FALSE)
    }
}

impl<P, F> AllocVar<SWAffine<P>, BasePrimeField<P>> for ProjectiveVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, BasePrimeField<P>>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    fn new_variable<T: Borrow<SWAffine<P>>>(
        cs: impl Into<Namespace<BasePrimeField<P>>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
        mode: AllocationMode,
    ) -> Result<Self, SynthesisError> {
        Self::new_variable(
            cs,
            || f().map(|b| SWProjective::from((*b.borrow()).clone())),
            mode,
        )
    }
}

impl<P, F> AllocVar<SWProjective<P>, BasePrimeField<P>> for ProjectiveVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, BasePrimeField<P>>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    fn new_variable<T: Borrow<SWProjective<P>>>(
        cs: impl Into<Namespace<BasePrimeField<P>>>,
        f: impl FnOnce() -> Result<T, SynthesisError>,
        mode: AllocationMode,
    ) -> Result<Self, SynthesisError> {
        let ns = cs.into();
        let cs = ns.cs();
        let f = || Ok(*f()?.borrow());
        match mode {
            AllocationMode::Constant => Self::new_variable_omit_prime_order_check(cs, f, mode),
            AllocationMode::Input => Self::new_variable_omit_prime_order_check(cs, f, mode),
            AllocationMode::Witness => {
                // if cofactor.is_even():
                //   divide until you've removed all even factors
                // else:
                //   just directly use double and add.
                let mut power_of_2: u32 = 0;
                let mut cofactor = P::COFACTOR.to_vec();
                while cofactor[0] % 2 == 0 {
                    div2(&mut cofactor);
                    power_of_2 += 1;
                }

                let cofactor_weight = BitIteratorBE::new(cofactor.as_slice())
                    .filter(|b| *b)
                    .count();
                let modulus_minus_1 = (-P::ScalarField::one()).into_bigint(); // r - 1
                let modulus_minus_1_weight =
                    BitIteratorBE::new(modulus_minus_1).filter(|b| *b).count();

                // We pick the most efficient method of performing the prime order check:
                // If the cofactor has lower hamming weight than the scalar field's modulus,
                // we first multiply by the inverse of the cofactor, and then, after allocating,
                // multiply by the cofactor. This ensures the resulting point has no cofactors
                //
                // Else, we multiply by the scalar field's modulus and ensure that the result
                // equals the identity.

                let (mut ge, iter) = if cofactor_weight < modulus_minus_1_weight {
                    let ge = Self::new_variable_omit_prime_order_check(
                        ark_relations::ns!(cs, "Witness without subgroup check with cofactor mul"),
                        || f().map(|g| g.into_affine().mul_by_cofactor_inv().into()),
                        mode,
                    )?;
                    (
                        ge,
                        BitIteratorBE::without_leading_zeros(cofactor.as_slice()),
                    )
                } else {
                    let ge = Self::new_variable_omit_prime_order_check(
                        ark_relations::ns!(cs, "Witness without subgroup check with `r` check"),
                        || {
                            f().map(|g| {
                                let g = g.into_affine();
                                let power_of_two = P::ScalarField::ONE.into_bigint() << power_of_2;
                                let power_of_two_inv = P::ScalarField::from_bigint(power_of_two)
                                    .and_then(|n| n.inverse())
                                    .unwrap();
                                g.mul(power_of_two_inv)
                            })
                        },
                        mode,
                    )?;

                    (
                        ge,
                        BitIteratorBE::without_leading_zeros(modulus_minus_1.as_ref()),
                    )
                };
                // Remove the even part of the cofactor
                for _ in 0..power_of_2 {
                    ge.double_in_place()?;
                }

                let mut result = Self::zero();
                for b in iter {
                    result.double_in_place()?;

                    if b {
                        result += &ge
                    }
                }
                if cofactor_weight < modulus_minus_1_weight {
                    Ok(result)
                } else {
                    ge.enforce_equal(&ge)?;
                    Ok(ge)
                }
            },
        }
    }
}

#[inline]
fn div2(limbs: &mut [u64]) {
    let mut t = 0;
    for i in limbs.iter_mut().rev() {
        let t2 = *i << 63;
        *i >>= 1;
        *i |= t;
        t = t2;
    }
}

impl<P, F> ToBitsGadget<BasePrimeField<P>> for ProjectiveVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, BasePrimeField<P>>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    #[tracing::instrument(target = "r1cs")]
    fn to_bits_le(&self) -> Result<Vec<Boolean<BasePrimeField<P>>>, SynthesisError> {
        let g = self.to_affine()?;
        let mut bits = g.x.to_bits_le()?;
        let y_bits = g.y.to_bits_le()?;
        bits.extend_from_slice(&y_bits);
        bits.push(g.infinity);
        Ok(bits)
    }

    #[tracing::instrument(target = "r1cs")]
    fn to_non_unique_bits_le(&self) -> Result<Vec<Boolean<BasePrimeField<P>>>, SynthesisError> {
        let g = self.to_affine()?;
        let mut bits = g.x.to_non_unique_bits_le()?;
        let y_bits = g.y.to_non_unique_bits_le()?;
        bits.extend_from_slice(&y_bits);
        bits.push(g.infinity);
        Ok(bits)
    }
}

impl<P, F> ToBytesGadget<BasePrimeField<P>> for ProjectiveVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, BasePrimeField<P>>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    #[tracing::instrument(target = "r1cs")]
    fn to_bytes_le(&self) -> Result<Vec<UInt8<BasePrimeField<P>>>, SynthesisError> {
        let g = self.to_affine()?;
        let mut bytes = g.x.to_bytes_le()?;
        let y_bytes = g.y.to_bytes_le()?;
        let inf_bytes = g.infinity.to_bytes_le()?;
        bytes.extend_from_slice(&y_bytes);
        bytes.extend_from_slice(&inf_bytes);
        Ok(bytes)
    }

    #[tracing::instrument(target = "r1cs")]
    fn to_non_unique_bytes_le(&self) -> Result<Vec<UInt8<BasePrimeField<P>>>, SynthesisError> {
        let g = self.to_affine()?;
        let mut bytes = g.x.to_non_unique_bytes_le()?;
        let y_bytes = g.y.to_non_unique_bytes_le()?;
        let inf_bytes = g.infinity.to_non_unique_bytes_le()?;
        bytes.extend_from_slice(&y_bytes);
        bytes.extend_from_slice(&inf_bytes);
        Ok(bytes)
    }
}

#[cfg(test)]
mod test_sw_curve {
    use crate::{
        alloc::AllocVar,
        convert::ToBitsGadget,
        eq::EqGadget,
        fields::{emulated_fp::EmulatedFpVar, fp::FpVar},
        groups::{curves::short_weierstrass::ProjectiveVar, CurveVar},
    };
    use ark_ec::{
        short_weierstrass::{Projective, SWCurveConfig},
        CurveGroup,
    };
    use ark_ff::PrimeField;
    use ark_relations::r1cs::{ConstraintSystem, Result};
    use ark_std::UniformRand;
    use num_traits::Zero;

    fn zero_point_scalar_mul_satisfied<G>() -> Result<bool>
    where
        G: CurveGroup,
        G::BaseField: PrimeField,
        G::Config: SWCurveConfig,
    {
        let mut rng = ark_std::test_rng();

        let cs = ConstraintSystem::new_ref();
        let point_in = Projective::<G::Config>::zero();
        let point_out = Projective::<G::Config>::zero();
        let scalar = G::ScalarField::rand(&mut rng);

        let point_in =
            ProjectiveVar::<G::Config, FpVar<G::BaseField>>::new_witness(cs.clone(), || {
                Ok(point_in)
            })?;
        let point_out =
            ProjectiveVar::<G::Config, FpVar<G::BaseField>>::new_input(cs.clone(), || {
                Ok(point_out)
            })?;
        let scalar = EmulatedFpVar::new_input(cs.clone(), || Ok(scalar))?;

        let mul = point_in.scalar_mul_le(scalar.to_bits_le().unwrap().iter())?;

        point_out.enforce_equal(&mul)?;

        cs.is_satisfied()
    }

    #[test]
    fn test_zero_point_scalar_mul() {
        assert!(zero_point_scalar_mul_satisfied::<ark_bls12_381::G1Projective>().unwrap());
        assert!(zero_point_scalar_mul_satisfied::<ark_pallas::Projective>().unwrap());
        assert!(zero_point_scalar_mul_satisfied::<ark_mnt4_298::G1Projective>().unwrap());
        assert!(zero_point_scalar_mul_satisfied::<ark_mnt6_298::G1Projective>().unwrap());
        assert!(zero_point_scalar_mul_satisfied::<ark_bn254::G1Projective>().unwrap());
    }
}