ark_r1cs_std/groups/curves/short_weierstrass/
non_zero_affine.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
use super::*;
use ark_ff::AdditiveGroup;
use ark_std::ops::Add;

/// An affine representation of a prime order curve point that is guaranteed
/// to *not* be the point at infinity.
#[derive(Educe)]
#[educe(Debug, Clone)]
#[must_use]
pub struct NonZeroAffineVar<
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
> where
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    /// The x-coordinate.
    pub x: F,
    /// The y-coordinate.
    pub y: F,
    #[educe(Debug(ignore))]
    _params: PhantomData<P>,
}

impl<P, F> NonZeroAffineVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    pub fn new(x: F, y: F) -> Self {
        Self {
            x,
            y,
            _params: PhantomData,
        }
    }

    /// Converts self into a non-zero projective point.
    #[tracing::instrument(target = "r1cs", skip(self))]
    pub fn into_projective(&self) -> ProjectiveVar<P, F> {
        ProjectiveVar::new(self.x.clone(), self.y.clone(), F::one())
    }

    /// Performs an addition without checking that other != ±self.
    #[tracing::instrument(target = "r1cs", skip(self, other))]
    pub fn add_unchecked(&self, other: &Self) -> Result<Self, SynthesisError> {
        if [self, other].is_constant() {
            let result = self.value()?.add(other.value()?).into_affine();
            Ok(Self::new(F::constant(result.x), F::constant(result.y)))
        } else {
            let (x1, y1) = (&self.x, &self.y);
            let (x2, y2) = (&other.x, &other.y);
            // Then,
            // slope lambda := (y2 - y1)/(x2 - x1);
            // x3 = lambda^2 - x1 - x2;
            // y3 = lambda * (x1 - x3) - y1
            let numerator = y2 - y1;
            let denominator = x2 - x1;
            // It's okay to use `unchecked` here, because the precondition of
            // `add_unchecked` is that self != ±other, which means that
            // `numerator` and `denominator` are both non-zero.
            let lambda = numerator.mul_by_inverse_unchecked(&denominator)?;
            let x3 = lambda.square()? - x1 - x2;
            let y3 = lambda * &(x1 - &x3) - y1;
            Ok(Self::new(x3, y3))
        }
    }

    /// Doubles `self`. As this is a prime order curve point,
    /// the output is guaranteed to not be the point at infinity.
    #[tracing::instrument(target = "r1cs", skip(self))]
    pub fn double(&self) -> Result<Self, SynthesisError> {
        if [self].is_constant() {
            let result = SWProjective::<P>::from(self.value()?)
                .double()
                .into_affine();
            // Panic if the result is zero.
            assert!(!result.is_zero());
            Ok(Self::new(F::constant(result.x), F::constant(result.y)))
        } else {
            let (x1, y1) = (&self.x, &self.y);
            let x1_sqr = x1.square()?;
            // Then,
            // tangent lambda := (3 * x1^2 + a) / (2 * y1);
            // x3 = lambda^2 - 2x1
            // y3 = lambda * (x1 - x3) - y1
            let numerator = x1_sqr.double()? + &x1_sqr + P::COEFF_A;
            let denominator = y1.double()?;
            // It's okay to use `unchecked` here, because the precondition of `double` is
            // that self != zero.
            let lambda = numerator.mul_by_inverse_unchecked(&denominator)?;
            let x3 = lambda.square()? - x1.double()?;
            let y3 = lambda * &(x1 - &x3) - y1;
            Ok(Self::new(x3, y3))
        }
    }

    /// Computes `(self + other) + self`. This method requires only 5
    /// constraints, less than the 7 required when computing via
    /// `self.double() + other`.
    ///
    /// This follows the formulae from [\[ELM03\]](https://arxiv.org/abs/math/0208038).
    #[tracing::instrument(target = "r1cs", skip(self))]
    pub fn double_and_add_unchecked(&self, other: &Self) -> Result<Self, SynthesisError> {
        if [self].is_constant() || other.is_constant() {
            self.double()?.add_unchecked(other)
        } else {
            // It's okay to use `unchecked` the precondition is that `self != ±other` (i.e.
            // same logic as in `add_unchecked`)
            let (x1, y1) = (&self.x, &self.y);
            let (x2, y2) = (&other.x, &other.y);

            // Calculate self + other:
            // slope lambda := (y2 - y1)/(x2 - x1);
            // x3 = lambda^2 - x1 - x2;
            // y3 = lambda * (x1 - x3) - y1
            let numerator = y2 - y1;
            let denominator = x2 - x1;
            let lambda_1 = numerator.mul_by_inverse_unchecked(&denominator)?;

            let x3 = lambda_1.square()? - x1 - x2;

            // Calculate final addition slope:
            let lambda_2 =
                (lambda_1 + y1.double()?.mul_by_inverse_unchecked(&(&x3 - x1))?).negate()?;

            let x4 = lambda_2.square()? - x1 - x3;
            let y4 = lambda_2 * &(x1 - &x4) - y1;
            Ok(Self::new(x4, y4))
        }
    }

    /// Doubles `self` in place.
    #[tracing::instrument(target = "r1cs", skip(self))]
    pub fn double_in_place(&mut self) -> Result<(), SynthesisError> {
        *self = self.double()?;
        Ok(())
    }
}

impl<P, F> R1CSVar<<P::BaseField as Field>::BasePrimeField> for NonZeroAffineVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    type Value = SWAffine<P>;

    fn cs(&self) -> ConstraintSystemRef<<P::BaseField as Field>::BasePrimeField> {
        self.x.cs().or(self.y.cs())
    }

    fn value(&self) -> Result<SWAffine<P>, SynthesisError> {
        Ok(SWAffine::new(self.x.value()?, self.y.value()?))
    }
}

impl<P, F> CondSelectGadget<<P::BaseField as Field>::BasePrimeField> for NonZeroAffineVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    #[inline]
    #[tracing::instrument(target = "r1cs")]
    fn conditionally_select(
        cond: &Boolean<<P::BaseField as Field>::BasePrimeField>,
        true_value: &Self,
        false_value: &Self,
    ) -> Result<Self, SynthesisError> {
        let x = cond.select(&true_value.x, &false_value.x)?;
        let y = cond.select(&true_value.y, &false_value.y)?;

        Ok(Self::new(x, y))
    }
}

impl<P, F> EqGadget<<P::BaseField as Field>::BasePrimeField> for NonZeroAffineVar<P, F>
where
    P: SWCurveConfig,
    F: FieldVar<P::BaseField, <P::BaseField as Field>::BasePrimeField>,
    for<'a> &'a F: FieldOpsBounds<'a, P::BaseField, F>,
{
    #[tracing::instrument(target = "r1cs")]
    fn is_eq(
        &self,
        other: &Self,
    ) -> Result<Boolean<<P::BaseField as Field>::BasePrimeField>, SynthesisError> {
        let x_equal = self.x.is_eq(&other.x)?;
        let y_equal = self.y.is_eq(&other.y)?;
        Ok(x_equal & y_equal)
    }

    #[inline]
    #[tracing::instrument(target = "r1cs")]
    fn conditional_enforce_equal(
        &self,
        other: &Self,
        condition: &Boolean<<P::BaseField as Field>::BasePrimeField>,
    ) -> Result<(), SynthesisError> {
        let x_equal = self.x.is_eq(&other.x)?;
        let y_equal = self.y.is_eq(&other.y)?;
        let coordinates_equal = x_equal & y_equal;
        coordinates_equal.conditional_enforce_equal(&Boolean::TRUE, condition)?;
        Ok(())
    }

    #[inline]
    #[tracing::instrument(target = "r1cs")]
    fn enforce_equal(&self, other: &Self) -> Result<(), SynthesisError> {
        self.x.enforce_equal(&other.x)?;
        self.y.enforce_equal(&other.y)?;
        Ok(())
    }

    #[inline]
    #[tracing::instrument(target = "r1cs")]
    fn conditional_enforce_not_equal(
        &self,
        other: &Self,
        condition: &Boolean<<P::BaseField as Field>::BasePrimeField>,
    ) -> Result<(), SynthesisError> {
        let is_equal = self.is_eq(other)?;
        (is_equal & condition).enforce_equal(&Boolean::FALSE)
    }
}

#[cfg(test)]
mod test_non_zero_affine {
    use crate::{
        alloc::AllocVar,
        eq::EqGadget,
        fields::fp::{AllocatedFp, FpVar},
        groups::{
            curves::short_weierstrass::{non_zero_affine::NonZeroAffineVar, ProjectiveVar},
            CurveVar,
        },
        R1CSVar,
    };
    use ark_ec::{models::short_weierstrass::SWCurveConfig, CurveGroup};
    use ark_relations::r1cs::ConstraintSystem;
    use ark_std::{vec::Vec, One};
    use ark_test_curves::bls12_381::{g1::Config as G1Config, Fq};

    #[test]
    fn correctness_test_1() {
        let cs = ConstraintSystem::<Fq>::new_ref();

        let x = FpVar::Var(
            AllocatedFp::<Fq>::new_witness(cs.clone(), || Ok(G1Config::GENERATOR.x)).unwrap(),
        );
        let y = FpVar::Var(
            AllocatedFp::<Fq>::new_witness(cs.clone(), || Ok(G1Config::GENERATOR.y)).unwrap(),
        );

        // The following code uses `double` and `add` (`add_unchecked`) to compute
        // (1 + 2 + ... + 2^9) G

        let sum_a = {
            let mut a = ProjectiveVar::<G1Config, FpVar<Fq>>::new(
                x.clone(),
                y.clone(),
                FpVar::Constant(Fq::one()),
            );

            let mut double_sequence = Vec::new();
            double_sequence.push(a.clone());

            for _ in 1..10 {
                a = a.double().unwrap();
                double_sequence.push(a.clone());
            }

            let mut sum = double_sequence[0].clone();
            for elem in double_sequence.iter().skip(1) {
                sum = sum + elem;
            }

            let sum = sum.value().unwrap().into_affine();
            (sum.x, sum.y)
        };

        let sum_b = {
            let mut a = NonZeroAffineVar::<G1Config, FpVar<Fq>>::new(x, y);

            let mut double_sequence = Vec::new();
            double_sequence.push(a.clone());

            for _ in 1..10 {
                a = a.double().unwrap();
                double_sequence.push(a.clone());
            }

            let mut sum = double_sequence[0].clone();
            for elem in double_sequence.iter().skip(1) {
                sum = sum.add_unchecked(&elem).unwrap();
            }

            (sum.x.value().unwrap(), sum.y.value().unwrap())
        };

        assert_eq!(sum_a.0, sum_b.0);
        assert_eq!(sum_a.1, sum_b.1);
    }

    #[test]
    fn correctness_test_2() {
        let cs = ConstraintSystem::<Fq>::new_ref();

        let x = FpVar::Var(
            AllocatedFp::<Fq>::new_witness(cs.clone(), || Ok(G1Config::GENERATOR.x)).unwrap(),
        );
        let y = FpVar::Var(
            AllocatedFp::<Fq>::new_witness(cs.clone(), || Ok(G1Config::GENERATOR.y)).unwrap(),
        );

        // The following code tests `double_and_add`.
        let sum_a = {
            let a = ProjectiveVar::<G1Config, FpVar<Fq>>::new(
                x.clone(),
                y.clone(),
                FpVar::Constant(Fq::one()),
            );

            let mut cur = a.clone();
            cur.double_in_place().unwrap();
            for _ in 1..10 {
                cur.double_in_place().unwrap();
                cur = cur + &a;
            }

            let sum = cur.value().unwrap().into_affine();
            (sum.x, sum.y)
        };

        let sum_b = {
            let a = NonZeroAffineVar::<G1Config, FpVar<Fq>>::new(x, y);

            let mut cur = a.double().unwrap();
            for _ in 1..10 {
                cur = cur.double_and_add_unchecked(&a).unwrap();
            }

            (cur.x.value().unwrap(), cur.y.value().unwrap())
        };

        assert!(cs.is_satisfied().unwrap());
        assert_eq!(sum_a.0, sum_b.0);
        assert_eq!(sum_a.1, sum_b.1);
    }

    #[test]
    fn correctness_test_eq() {
        let cs = ConstraintSystem::<Fq>::new_ref();

        let x = FpVar::Var(
            AllocatedFp::<Fq>::new_witness(cs.clone(), || Ok(G1Config::GENERATOR.x)).unwrap(),
        );
        let y = FpVar::Var(
            AllocatedFp::<Fq>::new_witness(cs.clone(), || Ok(G1Config::GENERATOR.y)).unwrap(),
        );

        let a = NonZeroAffineVar::<G1Config, FpVar<Fq>>::new(x, y);

        let n = 10;

        let a_multiples: Vec<NonZeroAffineVar<G1Config, FpVar<Fq>>> =
            std::iter::successors(Some(a.clone()), |acc| Some(acc.add_unchecked(&a).unwrap()))
                .take(n)
                .collect();

        let all_equal: Vec<NonZeroAffineVar<G1Config, FpVar<Fq>>> = (0..n / 2)
            .map(|i| {
                a_multiples[i]
                    .add_unchecked(&a_multiples[n - i - 1])
                    .unwrap()
            })
            .collect();

        for i in 0..n - 1 {
            a_multiples[i]
                .enforce_not_equal(&a_multiples[i + 1])
                .unwrap();
        }
        for i in 0..all_equal.len() - 1 {
            all_equal[i].enforce_equal(&all_equal[i + 1]).unwrap();
        }

        assert!(cs.is_satisfied().unwrap());
    }
}